ONE(1) PAGE RESUME

Mobile: +63-928-367-2262 emails: <u>cpassarella@gmail.com</u>, cpassarella@hotmail.com

https://www.linkedin.com/in/claudio-passarella-0440b215/				
Name:	Claudio Passarella			
Designation:	Optimization, APC, OTS, Automation, Instrumentation, Functional Safety and Process Control Specialist, Consultant, Engineer, Manager.			
Nationality:	Italy and VenezuelaDate of birth:May 24th, 1960			
Education:	 <u>Chemical Engineer</u> (Jan-1984) Universidad Simón Bolívar. Caracas, Venezuela. (www.usb.ve) <u>Master Scientarium in Chemical Engineering</u> (July 1989) (Specialization: Automation, Instrumentation, Optimization and Process Control) Universidad Simón Bolívar. Caracas, Venezuela. (www.usb.ve) 			
Prof. Affiliation:	TÜV Rheinland SIS FS Engineer certified: 1125/08			
	2008			

CAREER SUMMARY:

I am a Chemical Engineer, with a Master degree (MSc) pointed to "Advanced Process Control" (APC), Industrial Automation, Instrumentation, and Process Control.

My main experience is in Oil and Gas industry is oriented toward Simulation, Instrumentation, Functional Safety and Process Control.

I have been involved in several projects, performing PMC/EPC, Company and Contractor roles.

My professional experience covers:

- a) Project management experience on development of commercial and technical project specifications. Project budget and cash flow, cost and benefits estimations. Project scheduling, control, man effort estimation and control of project team management. Production planning and optimization. Commercial offers revision/evaluation. Preparation/Management of contracts for technical services. ITB Revision.
- b) Experience applying international standards (ASTM, API, IEC, ASME, IEEE, ANSI, ISA, DIN, ISO, NACE, BS, Saudi Aramco, PDO, Shell DEPs, Total GSs).
- c) Design, selection and verification of contractors, and vendor documents for control valves, instrument data sheets, control (DCS) and safeguarding (SIS) systems, and analysers.
- d) Development of Control/Safeguarding narratives, integrated narratives, operation procedures, cause and effect tables, control logics, safeguarding protection logics, for hydrocracker reactors, compressors, pumps, air coolers, separators, etc.
- e) Experience on Control and Instrumentation definition, design, installation, construction, commissioning, start-up and operation, oriented toward project Management/Control. Valve Partial Stroke test design, Valve asset management system, Regulatory/Basic Process Control, MIMO control, Compressor/Anti-Surge Control, Combustion control, Advanced/Complex Control loops, APC, Complex Control, Supervisory control, Regulatory/Basic Control, Constraint/Optimisation Control, Batch Control, Distillation control, Neural Networks, Sequential Control, Custody Transfer, Refinery Planning/Scheduling, Operator Training Simulator (OTS).
- f) Application experience of the standard IEC 61508/61511: design of safety systems (SIS, IPS, ESD) and safety functions (SIFs, IPFs), "Safety Requirement Specifications" (SRS), SIL determination/verification, PFD/PFH calculations, Hazop, FMEA, FMECA, FMEDA, emphasis on diagnostics in safety design.
- g) I have planned, leaded and been involved in many DCS/SIS FAT/SAT activities. Including own prepared procedures and simple simulators to test Control/Safeguarding logics in FAT sessions.
- h) Checking instrumentation installation at the plant, against instrument hook-up drawing. Generate list of recommendations and required modifications/recalibrations to fulfil good engineering practices and project design specifications.
- i) Strong Communication/Documentation/Writing skills and experience as project engineer and project leader. Strong analytical and solving problem skills combined with strong technical knowledge.

CURRICULUM VITAE DETAILED RESUME Mobile: +63-928-367-2262 emails: <u>cpassarella@gmail.com</u>, <u>cpassarella@hotmail.com</u>

https://www.linkedin.com/in/claudio-passarella-0440b215/				
Name:	Claudio Passarella			
Designation:	Optimization, APC, OTS, Automation, Instrumentation, Functional Safety and Process Control Specialist, Consultant, Engineer, Manager.			
Nationality:	Italy and VenezuelaDate of birth:May 24th, 1960			
Education:	 <u>Chemical Engineer</u> (Jan-1984) Universidad Simón Bolívar. Caracas, Venezuela. (www.usb.ve) <u>Master Scientarium in Chemical Engineering</u> (July 1989) (Specialization: Automation, Instrumentation, Optimization and Process Control) Universidad Simón Bolívar. Caracas, Venezuela. (www.usb.ve) 			
Prof. Affiliation:	TÜV Rheinland SIS FS Engineer certified: 1125/08 2008			

TABLE OF CONTENTS

A	SKILLS:
В	CAREER HISTORY OUTLINE:
С	CAREER HISTORY:
D	TRAINING:2

A <u>SKILLS:</u>

- 1. Languages: English (100%), Italian (100%) and Spanish (100%, Mother language).
- 2. More than 30 years of experience in the Oil and Gas industry, working in several projects in the positions of Deputy Manager Instrumentation, Engineering Manager, Technical Specialist, Consultant, APC engineer, Instrument Advisor, Lead Engineer, Project Engineer; during the project phases: Studies, Definition, PMC, FEED/FEL, MAC, PAS, Basic & Detail engineering, Construction, Installation, Commissioning, Start-up and Operation.
- 3. Project management experience on development of commercial and technical project specifications. Project budget and cash flow, cost and benefits estimations. Project scheduling, control, man effort estimation and control of project team management. Production planning and optimization. Commercial offers revision/evaluation. Preparation/Management of contracts for technical services. ITB Revision.
- 4. Experience applying international standards (ASTM, API, IEC, ASME, IEEE, ANSI, ISA, DIN, ISO, NACE, BS, Saudi Aramco, PDO, Shell DEPs, Total GSs)
- 5. Process control, Field and Operation experience on design, checking out, commissioning and starting up of petrochemical plants like: Crude/Gas Flowlines, Compressor's stations, Gas Processing plants, Compression/Injection gas plant, Degassing, Gas Sweetening, Well Head Control Panels, Desalters, CDU, VDU, Coker, Merox, Amine, Sulfinol-X, Molecular Sieve plant, ISAL, UOP FCC, UOP HF Alkylation, Butamer, Reverse Butamer, Continuous Catalyst Regeneration Platforming (CCR Platforming), Catalytic Reforming (Platforming), Steam Cracker Plant, Ethylene Recovery Unit (ERU), Propylene Dehydration Unit (PDH), Gasoline Blending, Tank Farm, BTX, Cumene, Phenol, Ethylene, Hydro Cracker Unit (HCU), Naphtha Hydrotreater unit (NHT), Sulphur Recovery plant (SRU), Multiproduct Pipeline, Crude Pipeline, Fuel Gas system, Steam and Power plants, and Utilities.
- 6. Development of Control/Safeguarding narratives, cause and effect tables, control logics, safeguarding protection logics, for hydrocracker reactors, compressors, pumps, air coolers, separators, etc.
- Experience on Control and Instrumentation definition, design, installation, construction, commissioning, start-up and operation, oriented toward project Management/Control. Valve Partial Stroke test design, Valve asset management system, Regulatory/Basic Process Control, Multi Input Multi Output (MIMO) control, Compressor/Anti-Surge Control, Gas processing, Combustion control, APC, Complex Control, Supervisory control, Regulatory/Basic Control Constraint/Optimisation Control, Batch Control, Distillation control, Neural Networks, Sequential Logic, Custody Transfer, Refinery Planning/Scheduling, Operator Training Simulator (OTS).
- 8. Centrifugal Compressors' control experience on designing anti-surge control, compressors' trains load sharing, compressors' trains load control, consideration of process, mechanical and electrical constraints on compressors' control design, compressors' arrangement in series-parallel-combination, adaptation of control loops when side stream feed the compressor trains, compressors' control design oriented toward controlling inlet/outlet pressure and flow through the compressor machine.
- 9. Application experience of the standard IEC 61508/61511: design of safety systems (SIS, IPS, ESD) and safety functions (SIFs, IPFs), selection of components and instrument for safety loop, Low and High (Continuous) demand mode safety functions, "Safety Requirement Specifications" SIL determination/verification, PFD/PFH (SRS), calculations, Hazop, FMEA, FMECA, FMEDA, identification of advantages when diagnostics are used in the safety design, verification of valve partial stroke test SIL requirements, common cause failure considerations, impact SIL compliance of long maintenance time periods on unmanned installations, development of methodologies to keep/maintain design SIL rating certification, design of strategies for online monitoring of SIL rating degradation.

- 10. Control/Safety integrated designs.
- 11. Performance integration of control loops and operation modes.
- 12. Data application integration between analysers, Laboratory and Advanced/Complex control strategies.
- 13. Field experience on instrument installation checkout, supervisory, maintenance for instrumentation and control, including flow, level, pressure, temperature and process analyzers.
- 14. Experience on ICSS/DCS/FCS/PCS/SIS/ESD/PSD/IPS/PLC/SCADA/SW/HW/equipment and software products from companies like Honeywell, Invensys, Foxboro, Emerson, Yokogawa, ABB, UOP, Aspentech, Bonner & Moore, Siemens, Triconex, KBC, Varec, Rotork, Limitork, Fisher, Masoneilan, Mokveld, Daniel, Gensym (G2), SUN, Borland, Oracle, Informix, Sybase, Mathworks and Microsoft.
- 15. Experience on control systems like: Yokogawa, ABB, Foxboro [Schneider, Invensys], Honeywell, Delta V [Emerson] and Siemens.
- 16. Microsoft and Computer literate (Excel, Excel VBA, Word, Powerpoint, Visio, Outlook).
- 17. Intensive Field/test experience, intensive supervisory experience, instrumentation maintenance, Advanced/Regulatory control, DCSs (), PLCs, HIPS, HIPPS, APC engineer, Simulation, Blending operations/optimization, Oil Movement operations/optimization/data management, etc.
- P&ID's (PEFS) Field Checking and engineering development. Checking, definition and configuring of DCSs/PLCs/ESDs/SISs/IPSs. Loop/Segment signal check (Wireless, HART or Fieldbus). HAZOP (Process Hazard Analysis), SIL determination/verification, 3D Model review. Check design engineering documents.
- 19. Wide experience on tuning controllers and complex control loops, by gathering data manually, using standard formulae, or Self/Auto-Tuning programs. Knowledge of several techniques to apply: including algorithms based on step change test, pulse change test, preset compensation, pattern recognition, discrete parameter estimation and model reference.
- 20. Knowledge and experience in commitment and practice use of procedures/tools for control area like: Dynamics Control Systems Identifications, Neural Networks, Controller Tuning, Statistic on Quality Control Analysis, Control Process Application development, Analyzers, Basic feedback control, Master-Slave, Feed forward, Ratio Control, Constrain Control and Sequence control configuration.
- 21. Generate list of recommendations, required modifications/recalibrations to fulfill good engineering practices and design specifications, during PI&D development, plant construction, as well as support for commissioning and startup.
- 22. Flow meters verification, calibration and recalibration. Flow compensation. Mass and Energy balances. Flow metering systems. Control/Relief valve calculations.
- 23. Generate all reports, drawings, memos, control descriptions, configuration details and development/revision of any other required documentation.
- 24. Wide experience working with in the IT area with Solaris OS, Unix scripts, C/C++ programming skills, SQL, program test protocol management, Software development processes, Software configuration and release management methodologies, Makefile scripting and automated build programs/scripts, Source code and revision control tools like CVS, Oracle, Sybase, MS Access, Informix, ability to solve problems and look for additional alternative solutions. FORTRAN, BASIC, Java, C, C++, Excel VBA, Javascript, HTML, CCS, Git, UNIX scripts, Object Oriented technology, Linear Programming, Sequential Simplex, MATLAB, Simulink, LOOKOUT and other numerical calculations/algorithms.
- 25. Strong Communication/Documentation/Writing skills and experience as project engineer and project leader. Strong analytical and solving problem skills combined with strong technical knowledge.

B <u>CAREER HISTORY OUTLINE:</u>

LUMMUS Technologies www.lummustechnology.com Designation : Instrument and Process Control Advisor.	(March 2021 to June 2023)
Liutaio Consulting and Engineering Services <u>www.LiutaioCES.com</u> Designation : Principal Specialist/Consultant.	(July 2021 to February 2022)
CCJV - LPIC EPC1 SCU project (Liwa Plastics Industries Complex) (https://cameroning.com/join-the-cing-team/jobs-at-o (https://www.refiningandpetrochemicalsme.com/artic contract-for-liwa-plastics) Designation : PAS Process Control Lead	
Liutaio Consulting and Engineering Services <u>www.LiutaioCES.com</u> Designation : Principal Specialist/Consultant.	(August 2017 to October 2018)
PETROFAC INTERNATIONAL LTD (www.petrofac.com) Designation : Manager Instrumentation and Process Cont	(April 2015 to July 2017) rol
NOTE: in the period January-2014 to July-2017, this des for all below described experience. Designation v working activities.	
PETROFAC INTERNATIONAL LTD (www.petrofac.com) Designation : Deputy Manager Instrumentation	(January 2014 to March 2015)
PETROFAC INTERNATIONAL LTD. (www.petrofac.com) Designation : Technical Specialist - Instrumentation	(April 2010 - Dicember 2013)
HONEYWELL UOP (www.uop.com) Designation : Instrument Advisor	(November-2009 - April-2010)
REFICAR (www.reficar.com.co) Designation : Engineering Manager	(January-August 2009)
Balboa Refinery (www.refineriabalboa.es) Designation : Automation, Instrument and Process Contr	(June-2007 to December 2008) ol Lead Engineer
UOP LLC (www.uop.com) Designation : Instrument Advisor	(Aug-2004 to May-2007)
UNIVERSITY COURSES Designation : University Professor	(Feb-2003 to July-2004)
NEGROVEN (www.negroven.com) Designation : Project Engineer / Automation Specialist	(Feb-2003 to July-2004) (Contractor)
PDVSA, S.A. (www.pdvsa.com) Designation : Lead Project Engineer	(Jan-1995 to Dec-2003)

CORPOVEN, S.A. (www.pdvsa.com) PDVSA, S.A. (www.pdvsa.com) since January 1995 Designation : Unit Supervisor and Project Engineer (Apr-1990 to Jan-1995)

CORPOVEN, S.A. (www.pdvsa.com) PDVSA, S.A. (www.pdvsa.com) since January 1995 Designation : "Advanced Process Control" (APC) Engineer (Oct-1986 to Apr-1990)

C CAREER HISTORY:

LUMMUS Technologies

(March 2021 to June 2023)

www.lummustechnology.com

Designation : Instrument and Process Control Advisor.

Responsibilities SUMMARY:

- a) Involvement in FAT/SAT activities for DCS, SIS (ESD) FGS (F&G).
- b) Review and update "Process Control Narratives" and "Plant Interlocks" documentation.
- c) Review and update design documents for PDH reactors protection logic.
- d) To address and solve DCS/SIS/FGS commissioning and Client queries and requirements.
- e) Review, prepare documentation and execute Site Test for Control loops, Safeguarding and Sequence Logics.
- f) Tuning of simple and Complex Control loops.
- g) Involvement in supporting, improving and guaranteeing CLIENT smooth start-up and stable operation.

Project	Description / Scope		
1	Steam Cracker.	Client: HMEL	
	March-April 2022	Punjab, India	
	Steam Cracker plant and Sequences Logic	s for Charge Gas, Liquid and LPG	
	dryers' checkout.	-	
2	(ERU) Ethylene Recovery Unit.	<u>Client:</u> IOCL	
	July-October 2022	Paradip, India	
	Simple and Complex control loops' check	out.	
3	(PDH) Propane Dehyrogenation Unit.	<u>Client:</u> KPI	
	November-December 2022	Atyrau, Kazakhstan	
	Simple and Complex control loops' check	out and tuning. PDH start-up	
	support.		
4	(BGR) BONGAIGAON Refinery.	<u>Client:</u> IOCL	
	February 2023	Assam, India	
	Strategic flow compensation for compres		
5	(PDH) Propane Dehyrogenation Unit.	<u>Client:</u> Chinagas, Jiangsu	
	March-April 2023	Yanchang Zhongran Chemical.	
		Taixing, China	
	Reactor protection sequence checkout.		
	Reactor valves and Instrumentation checkout.		
	Simple and Complex control loops' checkout.		
6	(PDH) Propane Dehyrogenation Unit.	<u>Client:</u> KPI	
	May-June 2023 Ruiheng, China		
	Reactor control and protection sequences checkout.		
	Simple and Complex control loops' checkout.		

Liutaio Consulting and Engineering Services www.LiutaioCES.com

(August 2017 to October 2018)

Designation : CEO - Principal Specialist/Consultant.

After more than 30 years of achieving successful projects in the Oil and Gas industry, involved in the Control and Safeguarding Systems ´ design, review, Factory Acceptance Test (FAT), Site Acceptance Test (SAT), construction/installation, commissioning and startup, MSc. Claudio Passarella started **Liutaio** to provide Consulting and Engineering Services in the areas of "Process Control", Instrumentation, Simulation and "Functional Safety".

Vision

To be Leader providing Quality, Value-Added, Innovative Consulting and Engineering services in the areas of "Simulation", "Process Control", "Instrumentation", and "Functional Safety".

Mission

To provide simple but structured solutions and quality services to our customer, looking for improving operation stability and safety, to keep, recover or increase profit. CCJV - LPIC EPC-1 SCU project (Liwa Plastics Industries Complex) (https://cameronlng.com/join-the-clng-team/jobs-at-ccjv/) (https://www.refiningandpetrochemicalsme.com/article-14883-cbi-jv-wins-26bncontract-for-liwa-plastics)

Designation : Process Control Lead

Responsibilities SUMMARY:

- a) Involvement in FAT/SAT activities for DCS, SIS (ESD) FGS (F&G).
- b) Review and update "Process Control Narratives" and "Plant Interlocks" documentation.
- c) Calculate man-hours and prepare Schedule for "Functional Tests" (Sequence logics, Special calculations, Complex control and Safety loops).
- d) Execute, plan, schedule and monitor "Functional Test" (FT) activities of a team of instrument engineers and process engineers. FT activities integration and synchronization with other commissioning team activities.
- e) To address and solve DCS/SIS/FGS commissioning and Client gueries and requirements.
- f) Involvement in supporting, improving and guaranteeing LPIC EPC-1 smooth start-up and stable operation.

\$2.6bn project contract.	Client: OQ downstream (previously Orpic)
Capacity: 859 KTA Ethylene plant.	OQ's Liwa Plastics Industries Complex (LPIC) project
About 30,000 HW Inputs/Outputs.	Sultanate of Oman, Sohar.

•

•

Binary Refrigeration System

following OSBL facilities:

Storage and Offsite facilities

(MTBE/BUT-1)

Utility systems

Pygas Hydrotreating Unit (PGHYD)

MTBE & Butene-1 Recovery Units

Selective C4 Hydrogenation Unit (SLC4HY)

The LPIC EPC1 SCU Project also includes

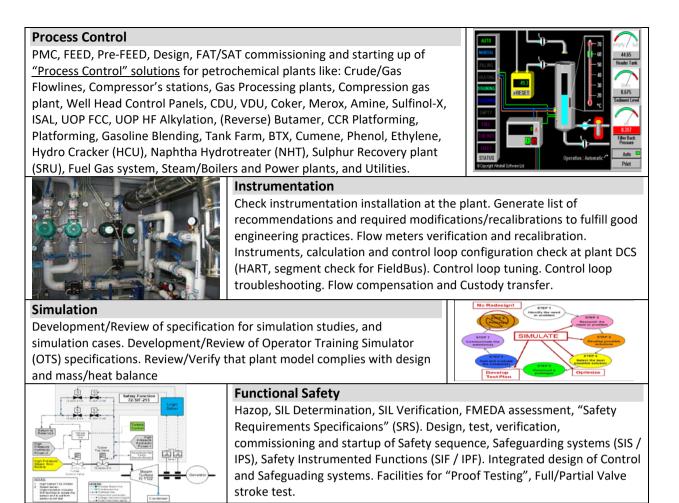
The EPC-1 Steam Cracker with Off-Site Works and Utility Packages scope of work includes:

- NGL Treating and Fractionation Unit • (NGLT)
- Refinery Dry Gas Treating Unit (RDG)
- Steam Cracker Unit (SCU) •
- Heater Feed & Cracking Heaters
- Main Fractionation Section .
- Charge Gas Compression & Acid Gas • Removal
- Chilling & Demethanizer .
- **Recovery & Purification Section**
- **Propylene Refrigeration System**

LPIC EPC1 SCU includes integration with the existing Sohar Refinery (SR) control and safeguarding system.

LIUTAIO CONSULTING AND ENGINEERING SERVICES (www.LiutajoCES.com)

(August 2017 to present day)


Designation : Director-CEO. Principal Specialist/Consultant.

After more than 30 years of achieving successful projects in the Oil and Gas industry, involved in the Control and Safeguarding Systems ´ design, review, Factory Acceptance Test (FAT), Site Acceptance Test (SAT), construction/installation, commissioning and startup, MSc. Claudio Passarella started **LIUTAIO** to provide Consulting and Engineering Services in the areas of "Process Control", Instrumentation, Simulation and "Functional Safety".

Vision
To be Leader providing Quality, Value-Added,
Innovative Consulting and Engineering services
in the areas of "Simulation", "Process Control",
"Instrumentation", and "Functional Safety".

Mission

To provide simple but structured solutions and quality services to our customer, looking for improving operation stability and safety, to keep, recover or increase profit.

Review our website for further information: www.LiutaioCES.com

PETROFAC INTERNATIONAL LTD (www.petrofac.com)(April 2015 to July 2017)Designation : Manager Instrumentation and Process Control

PETROFAC INTERNATIONAL LTD (<u>www.petrofac.com</u>) (January 2014 to March 2015) Designation : Deputy Manager Instrumentation

Responsibilities SUMMARY:

<u>Process Control</u>: Review Client's and Process design's requirements to provide the most simple and suitable Advanced process control design solutions to improve and guarantee the plant stable operation. Control Narrative development. Safeguarding Narrative review. Integration between Control and Safeguarding. FAT/SAT.

<u>Instrumentation:</u> Review and verify according to the process design: proper selection and installation details of instruments, I/O list, P&IDs instrument review, Instrument Loop Diagrams, Instrument data Sheets, BOM, flow compensation, etc.

Project	Description / Scope		
1	Rabaab Harweel Integration	Client: Petroleum Development Oman (PDO).	
	project (RHIP).	Muscat, Oman.	
	June 2014 - July 2017		
	Rabaab field, and int sour gas processing a	nd start-up of the Harweel field, PDO plans to develop the egrate production of both fields. The development includes and compression facilities to process fluids produced from	
	and condensate.		
		 Scope of this work was: Process design review. 	
		Structured Process Control and Safeguarding design.	
	5	o implement designed Process Control and Safeguarding.	
		I testing of "Typical control loops".	
		egration between control and safety designs. 'Process Control Narratives".	
		s process control integration.	
	3 .	"Multivariable Process Dynamic Simulation" (MPDS),	
		ng Simulation" (OTS), "Web Based Training Simulation" (ETS)	
	 Dynamic simulati 	5	
		vings review from "Process Control" point of view.	
		on system review, and FAT participation.	
		mation design philosophy review.	
		g Simulator (OTS) review, and FAT participation.	
		 Model Process Dynamic Simulation (MPDS) review, and FAT participation. WEB based Training Simulator (ETS) review, and FAT participation. 	
		List of plants in the project:	
		Gas production well, gas injection wells, Overall plant pressure control, Separators, Test Separator, Gas Degassing unit, Gas Dehydration unit, Gas	
	compression, Gas Inje Molecular Sieve unit,	compression, Gas Injection compressors, Acid Gas compressors, Sulfinol-X, Molecular Sieve unit, Mercury removal unit, Dewpointing unit, Water treatment	
		plant, and Utilities.	
		The Water treatment plants included:	
	5	n and distribution to Fire Water system.	
	 Filtered water sy Reverse Osmosis 	and Deaereation column system	
		er tanks and Mixed beds system.	
		M) and (HRSG) water system	
	Potable water system		
	ACHIEVEMENTS:	r mothodology and structured design the CLIENT	
	expectation was impr	r methodology and structured design, the CLIENT	
		ead of 1 year to execute FAT of Safety and Control system	
		s experiences with same project size.	
	2) Faster familia	arization of Operation personnel. Once an Operator learns a	
		ol structure, it was possible to apply the same operation	
		the same kind of equipment/control loops everywhere in	
	the plant. 3) Seamless test requirements	ing activity, honouring all Process Control and Safeguarding	

2	Sulphur Recovery plant.	Application of standard IEC 61508/61511		
	January-December 2015	Specific Safequarding activities were:		
		vo(2) Petrofac documents for HIPPS project development		
	and HIPPS project			
		nd verifications were done for HIPPS in several projects.		
		ocedure was applied to verify if several components of		
	safety functions sa	atisfy the specified SIL rating reported by VENDORs.		
3	Sulphur Recovery plant. January-May 2014	<u>Client:</u> Qatar Petroleum (QP). Mesaieed, Qatar.		
		s Claus Sulphur Recovery Unit (SRU) at NGL3 in Mesaieed is		
		significantly lower recovery efficiency, and its design does		
		vironmental Regulations.		
		Sulphur Recovery Upgrade Project is to upgrade the		
		existing facilities for 99.5% sulphur recovery and comply with the upcoming State Environmental Regulations. The existing SRU capacity of 285 tons per day (TPD)		
	shall be upgraded to 5	00 H D.		
	Scope of this work at s	ite was:		
	Plant Commissioni			
		tion of commissioning and start-up problems.		
	Review and solve of control loops.	Review and solve configuration problems and design misunderstanding in		
	Tune controllers.			
	Re-design of the Ir			
		• Tune complex control loops like: Sulphur reactor furnace conversion control,		
		analyser feedback and combustion control.		
	Console Operator	training.		

PETROFAC INTERNATIONAL LTD. (April 2010 to December 2013)

Current Designation : Technical Specialist - Instrumentation

January-December 2013 (ICSS team):

The ICSS team was created as a new business strategy to use the better PETROFAC expertise for reviewing and improving projects and proposal activities. The ICSS team executes the following activities:

- a) Review and improve ICSS design and project execution strategy (Control, Safety, Fire & Gas).
- b) Develop Complex Control Loops Narrative.
- c) Justify, apply, design and develop Advanced Process Control (APC).
- d) Define and supervise ICSS interface with Vendors.
- e) Review and Improve ICSS typical application: AMS, AImMS, HIPS, OTS, Networking, etc.
- f) Review and improve ICSS infrastructure: Panel layouts, Control Room layout, Load/Head consumption/dissipation, etc.

Project	Description / Scope		
1	Bab Habshan-1 project.	Client: Abu Dhabi Company for Onshore Oil Operations	
	October-December 2013	(ADCO).	
		Bab, Abu Dhabi, UAE.	
	of water injection clus electrical and instrum	The project has an anticipated duration of 20 months and includes the provision of water injection clusters, oil production wells, water injection wells, associated electrical and instrumentation facilities, pipelines (headers and flow lines), overhead power transmission lines and modifications at remote degassing	
		Scope of this project was: to define the scope of work to execute relocation of several Scada systems to facilitate project execution.	

Project	Description / Scope			
2	North East Bab (NEB)	Client: Abu Dhabi Company for Onshore Oil Operations		
	development.	(ADCO).		
	(Proposal) June 2013	Bab, Abu Dhabi, UAE.		
		ADCO intends to proceed with phase III of the North East Bab (NEB) development		
		ogram to add an additional 400 Mbd sustainable capacity.		
		ities will be required to handle the additional oil, gas and		
		m Al Dabbiya and Rumaitha field, located approximately		
		m Abu Dhabi. Water and gas injection facilities will also be		
	required to provide	pressure support and enhanced oil recovery.		
	TECHNIP Project sco	pe covers the Front End Engineering Design (FEED) of		
	optimum surface fac	ilities for the NEB Phase III Development Project to handle an		
	additional productio	n of 39 MBOPD Rumaitha and Shanayel fields by 2016.		
	Package-01 (firm sco	ope): FEED for Rumaitha / Shanayel Phase III Development		
		ario of Hydrocarbon (HC) Water Alternating Gas (WAG) for the		
	Enhanced Oil Recove	ery (EOR)		
	Scope of this project	proposal was: review of the HIPPS specification document.		
3	Jazan Integrated Gasification (Combined Client: Saudi Aramco		
	Cycle (IGCC) KSA.	Jazan Industrial area, KSA.		
	(Proposal) July 2013			
		ently developing a large world-scale electric Power plant		
		000 BPSD grassroots Jazan Refinery & Terminal Project being		
		an Economic City (JEC) at the south-western region of Saudi		
		Arabia. The Power plant will be based on Integrated Gasification Combined Cycle		
		(IGCC) technology and will not only serve the refinery power needs, but also		
		export a large amount of power to the national grid to meet the growing national		
		demand for electric power.		
		ect (JIGCC) will be integrated with the Refinery such that the		
		overall scope is optimized. Synergies include, but are not limited to, combined		
		wer generation, steam generation, potable water, hydrogen		
	etc. from the IGCC t	5		
		ck to the power plant will be the vacuum residue (VR)		
		nery plus imported high sulfur fuel oil (HSFO). The design		
		IGCC is expected to be about 110MBD of VR and/or HSFO and		
	will export a minimu	m of 2.4GW of net power to the grid.		
	Scope of this project	proposal woro:		
		a) Review of the Integrated Information System (IIS) specification and		
		integration of this system with the Refinery ICSS.b) Review of ICSS and Compressor control system specifications.		
		 Operation Planning and Scheduling. Capability assessment and Decision support. 		
		5 I.		
		 Maintenance Planning and Scheduling. Maintenance execution, work order management and support. 		
		•		
		Online Fault Modelling.HSE Management system.		
		ayomont systom.		

Project	Description / Scope			
4	Upper Zakum, UZ750 Project - Island	Client	Zakum Development Company (ZADCO)	
	Surface Facilities.		nabi, UAE.	
	June to December 2013			
	Lump Sum Turnkey (LSTK)	Lump Sum Turnkey (LSTK) Engineering, Procurement, Construction and		
	Commissioning (EPCC) wor	ks for inst	allation of the islands surface facilities for the	
	Production Build-Up (PBU)	Phase tha	t will achieve target oil production of 750,000	
			ntation of modularization strategy to	
			ed in fabrication yards and minimize the	
			ead over on the four artificial islands which	
			from Abu Dhabi. Project comprises of the	
	Water Injection Manifolds		s, Gas Lift Manifolds, Gas Injection Manifolds,	
	water injection manifolds			
	Scope of work was: prepar	snecific	ation for "Advanced Process control (APC)"	
	and integration with I-Field			
			isory and regulatory control.	
			ervisory and regulatory control.	
			and regulatory control.	
	Oil / Slug supervis			
	Control loop performance			
	Downhole Monitor			
5	Integrated Petrochemical Complex a		Client: Kasakhstan Petrochemical Industries	
	Infrastructure (IPCI) project.		Kasakhstan	
	(Proposal) March 2013			
			emical project at Karabatan in Kazakhstan	
		using gas feedstock from the Tengiz field to produce 500KTA of polypropylene		
	products.	products.		
	This plant will comprise.	This plant will comprise		
		This plant will comprise: 1- A propane dehydrogenation (PDH) unit		
		2- A polypropylene (PP) unit		
		3- Related Utilities and Offsites		
		4- Certain infrastructure facilities		
			e transportation of propane feedstock from	
	the TCO Facilities to the			
			C and the finance is Chinese.	
	The Work being ten	lered is fo	or the Utilities and Offsites and certain	
	infrastructure facili	ies which	have been split into 8 packages.	
	Scope of this project propo	<u>sal was:</u> I	Review of ICSS specifications.	
4	Sobar Definery Expansion	nt. Omar	Defineries and Detrochemical companies	
6			Refineries and Petrochemical companies. Tial area, Oman	
	(Proposal) March 2013			
		r Pneuma	tic Valve Partial Stroke test.	
7			Energy International Ltd	
	February 2013			
		Ids in the	Miran Block of Sulaymaniah in the Kurdistan	
	region of Iraq.		-	
	The project is intended to	The project is intended to be implemented in phases. Phase I will consist of gas		
		processing trains having sales gas volumes of up to 4 BCMA with associated		
	support units and utilities.			

Project	Description / Scope				
8	Akkas Gas Plant	Client: KOGAS			
	(Proposal) January-February 2013	Iraq			
		The Akkas Field is located in the North West of Iraq, in the Al Anbar province			
		close to the Syrian border. The development includes as minimum:			
	 FCP(2015) - A progra 	• FCP(2015) - A programme to achieve First Commercial Production (FCP) at a			
	net dry gas production	net dry gas production rate equal to 25% of the Plateau Production Target			
		ssible, but no later than 3 years from approval of the PDP.			
		mme for construction of processing plant and related			
		tions within the Akkas Contract Area, to achieve a target			
		for a period of 13 years, including the extraction of			
		NGLs), no later than 6 years from the date upon which			
	the GDPSC becomes				
		network to collect production from a number of discrete			
		ring Hubs positioned across the contract area and deliver rocessing Facility (CPF).			
		produced fluids and produce on-specification products.			
		ipelines to transport the Dry Gas, Liquefied Petroleum Gas			
		e products to the delivery destination.			
9		<u>Client:</u> TIMIMOUN			
		(SONATRACH 51%, TOTAL 37.75%, and CEPSA 11.25%)			
		Algeria			
		xtension of 13250 km ² . It is located at Algeria's South			
		West, 120 km to the West from In Salah gas fields and at 100 km east from the			
		route that links Timimoun to Tiberrhamine and Oufrane palm groves and to Sbaa			
		and Adrar village. The entire field is located in a desert area.			
		The development will include a 5 MSm ³ /d (raw gas) gas processing treatment			
		plant located in the CPF (Central Processing Facility). A dew point unit will be included in order to reach the gas export specifications.			
		bried through a 24'' pipeline up to a tie-in point to a new			
		by Sonatrach as part of other project.			
		by solialitacit as part of other project.			
10	LPG Revamp project	Client: Crescent Petroleum Dana gas			
-		Kurdistan, Iraq			
		ruction of a LPG & NGL storage & unloading terminal,			
		 located in Chemchemal, Iraq. The terminal will be utilized for the storage and distribution of LPG & Natural Gas Liquids in the Iraq surroundings. The terminal will have 14 bullets and 1 NGL storage tank. <u>Scope of work was:</u> to develop the Instrument Cost Estimation. It included: a) Demolition of instruments and related cables. b) Design and sizing of a new automation room. c) Installation of new ICSS. 			
	will have 14 bullets and				
	Scope of work was: to de				
	,				
	c) Installation of new l				
	d) Cost estimate.				

Project	Description / Scope				
11	DO Terminal Hejre Crude	Client: Dong Energy			
	Stabilisation Project	Fredericia, Denmark			
	(Proposal) July-October 2012	CAPACITY: 360000 M3 Propane, 360000 M3 Butane.			
		<u>Project Overview:</u> The Project comprises a new crude stabilisation plant in DONG Oil Pipe"s existing crude oil terminal adjacent to and operated by the Shell			
		Refinery. The Work comprises EPC of a new loading arm for LPG, at the Shell Oil			
		Terminal loading and unloading station at jetty 2, two(2) processing trains,			
		desulphurisation unit, LPG storage and utilities.			
	Scope of this project	Scope of this project proposal was: to develop the Instrument Cost Estimation. It			
	included:	proposal was. to develop the instrument cost Estimation. It			
	b) Design and sizing	of a new automation room.			
	, ,	of a new ICSS for the new plant and for a new loading arm			
	in the Jetty area				
	d) Replace old ICSS	by the new one.			
	e) Schedule and str existing plant.	ategy for re-using of instruments and equipment in the			
	f) Development of	the instruments and ICSS installation strategy to allow the			
		operate for about 18 months, parallel to new plant			
	construction, un be commissioned	til total plant shutdown where the new plant and ICSS will I and started up.			
		new ICSS with Shell control room, and remote terminal at about 65 km from the new plant).			
12	Pre-FEED to prepare project	<u>Client:</u> PETRONAS Carigali Iraq B.V. (PCIHBV)			
12	documentation.	Iraq			
	May-September 2012	CAPACITY: 50,000 BOPD Train No.3			
		rraf Final Fields Development Study, PETRONAS Carigali Iraq			
	B.V.				
		ject the Mishrif Crude Storage Facilities and Export Facilities			
		allow the export of the increased crude production through			
	project by others.	the new 11 km x 18" export pipeline developed and installed under the FCP project by others			
		d at Train 3 shall be used as fuel gas for Train 3 and the			
		future Produced water injection system, the remaining shall be exported to the			
		stalled 1Q 2014 by others.			
	installed under the FC	be operated in parallel with Trains 1 & 2 developed and			
	CAPACITY: 50 BPod of				
	Scope of this Pre-FEE				
		becifications and drawings, indicating special consideration			
	following documents	No.3, integrated with the existing trains 1 and 2. The			
		I & Safety System Architecture			
		DCS) System Architecture			
	c) SIS System Archite				
		System Architecture			
	e) Fire & Gas System f) Cause and Effect				
	g) Datasheet Library				
	h) Datasheet Library	for Motor Operated Valves			
		i) Datasheet Library for Control Valves			
		j) Datasheet Library for Relief Valves			
		k) Datasheet Library for Field Instruments			
	m) Instrument Index	 I) Datasheet Library for Fire & Gas Detectors m) Instrument Index 			
		uarding Design Philosophy			
	o) Specification for	Tank Gauging System			
	p) General Instrume				
	q) Specification forr) Specification for Specification				
	· · · ·	Fire and Gas System			

Project	Description / Scope				
		Custody Transfer Metering for Crude Product			
		Pipeline Leak Detection System			
	v) Specification for	Electro-Hydraulic Wellhead Control Panel.			
13	"Advanced Process Control"	Client: STAR refinery			
	(APC) project.	Turkey			
	(Proposal) March 2012	CAPACITY: 214,000 bbl/sd (10 Mio t/yr).			
		<u>Project Overview:</u> Garraf New grassroots oil refining Facility, to be located adjacent to the PETKIN Petrochemical Complex at Aliaga close to Izmir, in the			
		Aegean region of Turkey. The Facility will process mainly medium gravity and			
		de oils from, like: Azeri Light, Kirkuk and Urals; via deep sea			
		The Facility will provide LPG, Light Naphtha, Aromatic			
	Naphtha, Toluene, M	ix Xylene to PETKIN Petrochemical Complex, as well as Jet A-			
		iesel, Petroleum Coke and Sulphur. There is no gasoline and			
	fuel oil production.				
	Scope of this technic	al proposal was:			
		rated implementation of APC, Business management,			
		ation Management Model update strategy, by following a			
		ness Model; looking for getting the continuous maximum			
		ery installation, by aligning operation targets in all plants gets, with the minimum possible maintenance cost.			
	(MPC) technology.	The most common technology for applying APC is the Model Predictive Control (MPC) technology			
	· · · · · · · · · · · · · · · · · · ·	(MPC) technology. The APC technology based on MPC was proposed to be used CDU/VDU, DHT, NHT,			
		KHT, HCU, CCR, DCU and SRU/TGTU process plants.			
		And APC technology, NOT based on MPC shall be developed in the process plants:			
		CCR (Regeneration section), DCU (Decoking operation) and for Steam and Power			
	generation.				
14	Study of potential optimisation	Client: PETRONAS Carigali Iraq B.V. (PCIHBV)			
	options for the Garraf Field Development.	Iraq CAPACITY: 230 BPod of Crude, Gas and LPG			
	February-May 2012	CAPACITT. 250 Brou of Crude, Gas and LrG			
		Irraf Final Fields Development Study, PETRONAS Carigali Iraq			
	B.V.				
		conceptual study was to determine and design optimum			
		inal Field Development to accommodate production 230			
		o process associated gas. Two (2) proven formation in Garraf			
		were considered for development, namely Mishrif and Yamama. The project scope			
		Was:			
		1) Optimisation and de-bottlenecking for existing design Conceptual Study for Garraf Final Field Development (two(2) production trains of 50 Kbpod, Gas			
		processing plant 1 of 60MMscfd, water reinjection, single and cluster wells,			
	utilities)				
	2) Pre-FEED for Trai	2) Pre-FEED for Train 3			
	3) Pre-FEED for Gas	3) Pre-FEED for Gas Plant Phase 2			
	Scope of this technic	Scope of this technical study was:			
		Plant design review, optimization analysis and debottlenecking. Reviewed areas			
	were:	were:			
		erall Control System architecture.			
		ace plan and Work scope.			
		ntrol loops and Instrumentation.			
	d) Review of the Ca	use and Effect Matrix.			

Project	Description / Scope
15	Reducing Gas Generator. Client: Qatar Petroleum (QP)
	(Peer Review) June-2011 Qatar
	Project Overview: Gas Sweetening Facilities PROJECT at Mesaieed and Dukhan. The existing two stages Claus Sulphur Recovery Unit (SRU) at NGL3 in Mesaieed treats acid gas from existing two AGRU trains which sweeten NFA sour gas and Al Shaheen gas prior to NGL extraction. The SRU is currently operating at significantly lower recovery efficiency than its design and does not meet the State Environmental Regulations. The main objective of Sulphur Recovery Upgrade Project is to upgrade the existing facilities for 99.5% sulphur recovery and comply with the upcoming State Environmental Regulations. The upgrade project shall also process the Acid Gas streams from existing NGL 1/2/4 ADIP units and Vent Gas from NGL-2 Glycol Unit. The existing SRU capacity of 285 tons per day (TPD) shall be upgraded to 308 TPD.
	Scope of this technical audit was: to review the design strategy of the Burner Management System (BMS) logic and control loops for the Reduced Gas Generator (RGG).
16	Early Production FacilitiesClient:Client:Shell
	(Peer Review) May-Jul-2011 Majnoon, Southern Iraq
	 Project Overview: The Shell Iraq project included Engineering, Procurement, Fabrication, Construction Management, Operations a Maintenance of Early Production Systems (EPS) and Brown Field Facilities at Majnoon Field in Southern Iraq. The Majnoon field is located in the south east of Iraq, 60 km northwest of Basrah city. The field comprises multiple stacked early Cretaceous limestone and sandstone reservoirs. In order of depth they are the Hartha, Mishrif, Narh Urm, Zubair and Yamama. The total estimated volume of oil in place is approximately 38 Billion barrels. Hartha, Narh Urm and Zubair are low-pressure sweet reservoirs. Mishrif is low pressure and sour with some 0.1 mol % of H2S, while Yamama is high pressure and more sour with some 0.2 mol % of H2S. The approach to achieve First Commercial Production (FCP) in Majnoon is to install a new Central Processing Facility (CPF) to handle the additional capacity required. Expectations are that some 15-16 additional producer wells may be required to reach FCP. The scope is to build 2 x 50 Kbpd oil trains (New facilities) at Majnoon oil Field in Southern Iraq. New facilities include 3 Well Pads (MJE20, MJE22 and MJE24) and Central Processing Facilities (CPF). The 3 well pads are linked into common Production and Test headers Scope of this technical audit was: To review the Specifications and Design of the "Well Head Control Panel" (WHCP) and the "Multi Phase Flow Meter" (MPFM). To review the "Control Narratives DS1 & DS2" document, as well as the control loop design and specifications.
17	Galkynysh gas field processing facility Client: Turmengas
	(Documents Review) February-2011 Mary Welayaty, Turmennistan
	 <u>Project Overview:</u> installation of facilities to produce 20 BCMA of sales gas from approximately 40 production wells. The gas will be treated in a Central Processing Facility capacity 10 BCMA being developed by Petrofac (CPF-1). A parallel 10 BCMA processing facility is being developed by others (CPF-1A). Sales gas will be co-mingled, metered and exported via a common export pipeline. <u>Scope of this revision was to review the following documents:</u> a) 00-IN-SPC-0014_D1 Field Instruments Rev D1_08.07.10 b) 00-IN-SPC-0026_D1 Instrument Requirements for Packaged Equipment 08.07.10 c) 00-IN-SPC-0028_D1 Multi Phase Flow Meter specification 08.07.10

Project	Description / Scope			
18	Shetland gas plant project (LAGGAN Client: TOTAL E&P UK			
_	TORMORE). Shetland Island, UK			
	January-2011, April-2012 CAPACITY: 500 MMSCFD			
	Project Overview: Construction of reception, processing and gas export facilities			
	at the Sullom Voe area, in the Shetland island, UK. The Sullon Voe Gas Processing			
	plant (SGP) will receive gas from Laggan and Tormore gas condensate discoveries.			
	Laggan is located at 126 Km from Sullom Voe terminal. Tormore is located at			
	16km south west of Laggan. Export gas is sent via a 234km 30 inches pipeline south of the island to a tie-in point to connect to the Frigg UK Association (FUKA)			
	32 inches gas pipeline. From there the Laggan-Tormore gas would be transported			
	via the FUKA Pipeline to the existing TOTAL E&P UK operated onshore gas			
	processing plant at St Fergus, UK.			
	Scope of this project detail engineering was:			
	Control loop and instrument design for:			
	a) Compressor Trains Cold/Hot gas recirculation control scheme.b) Slugcatchers level and operation constrains control scheme.			
	b) Slugcatchers level and operation constrains control scheme.c) Heating Medium system: pressure, temperature, load allocation and			
	temperature load shedding control schemes.			
	d) Control scheme for controllers with 2 control valves (Same or different valve			
	sizes).			
	e) Override control loops.			
	f) Automatic/Semi-automatic Import/Export Fuel gas control scheme.			
	g) HIPS design.			
10	h) SDV/ESDV/BDV control panel design, with SOV testing facilities.			
19	El Merk projectClient: Groupment Berkine/Sonatrach Anadarko Association(Peer Review)Algeria			
	(Peer Review) Algeria January-2011 CAPACITY: Crude 98,307 STBPD, Condensate 28,825 STBPD and			
	LPG 31,079 STBPD			
	Project Overview: Oil and gas-condensate from the various fields is gathered			
	through flowlines to Field Gathering Stations (FGSs) and from there, through			
	production trunklines, to the Central Process Facility (CPF) where oil, condensate			
	and LPG are produced, stored and exported.			
	The CPF will include two oil/condensate treatment trains and a single NGL			
	recovery train plus gas injection, produced water treatment and low pressure			
	export for water injection, oil, condensate and LPG storage and export systems and all the required utility systems.			
	and an the required difficy systems.			
	Scope of this technical audit was: to verify if the RGC and IGC Supplier design (GE			
	Nuovo Pignone) fulfilled all PETROFAC requirements for these compressors			
	according to the PETROFAC's "Cause & Effect" design.			

Project	Description / Scope					
20	North LPG Tank Farm	Client: KNPC				
	(Proposal) September-2010 to	Kuwait				
	January-2011	CAPACITY: 360000 M3 Propane,				
	<u>360000 M3 Butane.</u> <u>Project Overview:</u> A new North LPG Tank Farm and associated facilities is to be					
	provided at Mina Al-Ahmadi Refinery (MAA) to store LPG products arising from t					
		and 3 and the planned new Gas Trains 4 and 5. The Tank				
		ne site of the existing north tank farm which is to be				
		demolished. The Project includes the provision of additional export facilities to increase the capacity of the existing ships loading systems.				
		Scope of this project proposal was: to develop the Instrument Cost Estimation. It				
	included: a) Demolition of some area.	tanks, civil structures and removal of cable in the project				
	b) Build up 5 propane t	tanks, 5 butane tanks and one methanol tank. All tanks t atmospheric pressure.				
		d Deep refrigeration systems.				
	d) ICSS installation, pro					
	, , , , , , , , , , , , , , , , , , , ,	e of all other INVENSYS system in the plant.				
		h an existing Honeywell ICSS in other plant areas. commissioning and startup of: instruments,				
		PSVs & control valves, Custody Metering skids, ultrasonic				
		ruck Loading facilities, automation of Jetty Loading arms,				
		rmance Monitoring system (CPMS), process analyzers &				
		Leak Detection system and Real Time Management				
		(RTMIS) (Infoplus 21).				
		ject specifications. Specifications for Quotation				
		Requirements (RFQ) were prepared and issued. Supplier's Quotations were reviewed. PETROFAC man hour's estimation was done. Bill of Quantities (BOQ)				
		repared, reviewed and issued.				
21	New ASAB ICSS	Clioent: ADCO				
		Asab, UAE.				
		audit was: to verify project scope which included:				
		ew Central Degassing Station (CDS).				
		b) Old CDS will be now RDS-6, and it will be connected to new CDS.c) Installation of a new ICSS (Integrated Control & Safety System, DCS, ESD,				
		F&G) in CDS.				
		d) Replacement of current ICSS at Remote Degassing Stations (RDS) No.1 to No.6				
		and connection to ICSS in CDS.				
	e) All necessary connec Sahil fields.	e) All necessary connections and communications with Bab, Quashwira, Shah and Sahil fields.				
	It was reviewed project	specification for ASAB Safeguarding system (ESD & F&G),				
		tion Fieldbus Design, Asset Management System, ASAB				
		m (OTS), Operating and Control Philosophy, ESD				
	Philosophy, Overall Control System Philosophy and Fire and Gas Detection Philosophy.					
22	4th NGL Train project	Client: GASCO				
		Ruwais, UAE				
		audit was: to verify project scope which included:				
		ew Main Control Room (NMCR). egrated Control Systems (ICS) of trains 1, 2 & 3, from Main				
		Control Room (MCR) to NMCR.				
		ICS for 4th NGL train.				
		It was reviewed project Control philosophy, Shutdown philosophy, Fire & Gas				
		scope, Alarm Management System, Plant Resource Manager, Analyzer Network System, Integrated Protection & Control System, Machine Monitoring System,				
	Turbine Control System, Compressor Control System, Honeywell Fail Safe					
		ninal Automation System, Trains 1/2/3 migration and new				
	Main Control Room.	· · · · · · · · · · · · · · · · · · ·				

Project	Description / Scope			
Project 23	at the Sullom Voe area plant (SGP) will receiv Laggan is located at 12 16km south west of La south of the island to 32 inches gas pipeline via the FUKA Pipeline processing plant at St <u>Scope of this project p</u> HAZOP. Instrument Lis proposal. Preparation Compressor's Trains C	Iant project MORE).Client: TOTAL E&P UK Shetland Island, UK CAPACITY: 500 MMSCFDI-August-2010Construction of reception, processing and gas export facilities he Sullom Voe area, in the Shetland island, UK. The Sullon Voe Gas Processing nt (SGP) will receive gas from Laggan and Tormore gas condensate discoveries. gan is located at 126 Km from Sullom Voe terminal. Tormore is located at m south west of Laggan. Export gas is sent via a 234km 30 inches pipeline th of the island to a tie-in point to connect to the Frigg UK Association (FUKA) nches gas pipeline. From there the Laggan-Tormore gas would be transported the FUKA Pipeline to the existing TOTAL E&P UK operated onshore gas cessing plant at St Fergus, UK.pe of this project proposal was: posal. Preparation of TBEs (Technical Bid Evaluation). Definition of npressor's Trains Control Strategy. Revision of existing technical documents preparation of new ones. Design and revision of HIPS (High Integrity tection System, or HIPPS).		
	HAZOP. Instrument Lis proposal. Preparation Compressor's Trains C and preparation of new	HAZOP. Instrument List index. Revision of Supplier's Technical and commercial proposal. Preparation of TBEs (Technical Bid Evaluation). Definition of Compressor's Trains Control Strategy. Revision of existing technical documents and preparation of new ones. Design and revision of HIPS (High Integrity		
	Design of special Blow	Design of special Blowdown valve solenoid control panel, to allow: a) Online solenoid tests.		
	loss".			
	c) User defined stage	c) User defined staggered delayed opening of Blowdown valves per "Fire Zone".		
	Development and revise Blowdown.	Development and revision of "Cause and Effect" table and planning of Staggered Blowdown.		

Honeywell UOP (<u>www.uop.com</u>)

Designation : Instrument Advisor

Instrument Advisor contractor at UOP LLC (www.uop.com). The responsibilities were:

a) Check instrumentation installation at the plant. Generate list of recommendations and required modifications/recalibrations to fulfil good engineering practices and UOP design specifications.

(November-2009 - April-2010)

- b) Flow meters verification and recalibration.
- c) Instruments, calculation and control loop configuration check at plant DCS (HART, segment check for FieldBus). Control loop tuning.
- d) Check Emergency Interlock Sequence logic (SIS, ESD), configuration at PLCs and testing.
- e) Generate all reports, drawings and documentation required by customer.
- f) Plant startup instrumentation support.

Project	Description / Scope			
1	Two(2) Trains Amine plant treatment	Client: GASCO		
	for sweetening natural gas.	tening natural gas. Habshan, UAE		
	February 2010	Capacity: 1.0 MMMSCFD.		
	Startup of two(2) Amine trains	Startup of two(2) Amine trains		
2	CRCS for CCR Plant and ACCS for LAB plan	UOP Training		
	December 2009	r 2009 Des Plaines, USA.		
	package for Catalyst continuous	Training for checking, power up, startup and commissioning the CRCS UOP package for Catalyst continuous regeneration on CCR plants, and ACCS UOP Package for operation of LAB plants. Des Plaines, Illinois, USA.		

REFICAR (www.reficar.com.co)

Designation : Engineering Manager

Automation, Instrument and Process Control Engineering Manager, member of the owner's project team for the "Refinería de Cartagena" Expansion project, Cartagena, Colombia.

Achieved activities:

- a) Follow up of project activities for FEL-2 phase completion (FEED).
- b) Follow up of contractor's activities and revision of issued contractor's deliverables.
- c) Instrument data sheets and unit's plot plant revision. Check design engineering documents.
- d) Active participation on the Preliminary Process Hazard Analyses (PPHA), SIL determination and Process Hazard Analyses (PPHA) during detail engineering for all plants.
- e) Active participation in the 3D Model review of all process units. Revision of ITB documents.
- f) Revision of basic engineering packages for the:
 - UOP Technology: Naphtha Hydrotreating unit (NHT), CCR Platforming with Regeneration (CCR), HF Alkylation unit (ALK), Butamer (BIU), Distillation Uniofining process (DHT), Unicracking unit (HCU)

NOTE: ALK included a Huels Selective Hydrogenation Process Unit (SHP) and an ALKAD process for recovering the additive "Betapicoline" and remove impurities like polymers.

- Lummus Technology: Delay Coking unit (DCU).
- Technip technology: Integrated Crude Distillation and Vaccum unit (CDU).

Balboa Refinery (<u>www.refineriabalboa.es</u>) (June-2007 to December 2008)

Designation : Automation, Instrument and Process Control Lead Engineer

Lead engineer responsible for the Automation, Instrumentation and Control areas in the project for construction of the "Balboa Refinery", Badajoz province, Spain.

Achieved activities:

- a) Check design Engineering documents and revision of basic engineering packages for the:
 - Shell Technology: Atmospheric (CDU) and Vacuum distillation (VDU) unit, Hydrocracking Unit (HCU) and Recontacting unit (RCU).
 - UOP Technology: Hydrodesulphurization unit (NDS), CCR Platforming with Regeneration (CCR) and Par-Isomerization unit (ISU).
 - Foster Wheeler Technology: Delay Coker plant (DCU).
 - Worley Parsons Technology: Sulfur Recovery Unit (SRU).
 - Technip Technology: Hydrogen plant (HMU).
 - Others: Steam and power generation plant, Offsite and Utilities.
- b) Initial participation on EPC packages and PMC selection processes.
- c) Budget definition, preparation and follow up for IT and Engineering services.
- d) Define FEED scope and activities for the areas of instrumentation, automation and process control.

- e) Define and manage contract process of a MAC supplier for the project. Preparation of ITB documents
- f) Preparation of Technical specification and scope of work on the following areas:
 - Automation Platform's General Data & Functionality. ED Plant Design. Intelligent Pl&Ds.
 - Training Management System. Simulation System.
 - Document Management system and Online Operator Log Book.
 - Energy Management Control System.
 - DCS, PLC, SCADA, ESD, SIS, F&G.
 - Instillation, selection and communication protocol requirements (OPC, HART and FieldBus) for Instrumentation and Analyzers.
 - Tank Information System
 - Planning, Scheduling and Reconciliation Management Systems.
 - Physical/Chemical Qualities Management Systems (LAB & Online/Offline Analyzers).
 - Asset Policy & Maintenance Management System. Condition Monitoring. Working orders management. Machine performance and model simulation/monitoring.

UOP LLC (www.uop.com)	(Aug-2004 - May-2007)
Designation : Instrument Advisor	

Instrument Advisor contractor at UOP LLC (<u>www.uop.com</u>). The responsibilities were:

- a) Check instrumentation installation at the plant. Generate list of recommendations and required modifications/recalibrations to fulfill good engineering practices and UOP design specifications.
- b) Flow meters verification and recalibration.
- c) Instruments, calculation and control loop configuration check at plant DCS (HART, segment check for FieldBus). Control loop tuning.
- d) Check Emergency Interlock Sequence logic (SIS, ESD), configuration at PLCs and testing.
- e) Generate all reports, drawings and documentation required by customer.
- f) Plant startup instrumentation support.

Project	Description / Scope				
1	DRCS for Penex Plant.	UOP Training			
	April 2007	Des Plair	nes, l	USA.	
	Training for checking, po package for Driers sequer			and commissioning the DRCS UOP	
2	Bensat, Naphtha Hydrotreating and				
_	May-November 2006			Mangalore, India	
	Plant checkout and startu	Plant checkout and startup			
3	CCR Platforming		Client: Slavneth		
	March-April 2006	ril 2006		Yaroslavl, Russia	
	Plant checkout and startu	Plant checkout and startup			
4	RxCat FCC plant		Clie	ent: ENAP	
	Febreary 2006	2006		cahuano, Chile	
	UOP New Technology imp	UOP New Technology implementation. Troubleshooting and checkout.			
5	Cumene and Phenol Plants.	and Phenol Plants. Client: Bluestar New Chemical Material Co.		New Chemical Material Co.	
	October-January 2006	Harbin, China			
	UOP New Technology imp	UOP New Technology implementation. Troubleshooting and checkout.			

Project	Description / Scope			
6	Butamer Unit.	Unit. Client: Gulf Advan		
	May-August 2005	Sipchem Re	efinery, Al-Jubail, Saudi Arabia	
	Plant checkout and star	tup		
7	Unicracking Plant.		Client: Panipat Refinery	
	April-May <u>2005</u>		Panipat, India	
	Plant checkout and star	tup		
8	ISAL plant		Client: S.N.P. Petrom, S.A	
	(Naphtha Hydrotreating and octane	recovery)	Arpechim Refinery, Piteşti, Romania	
	December-February 2005			
	Plant checkout and star	Plant checkout and startup		
9			etroleum Corporation Limited (CPCL)	
	Chen	Chennai, India		
	Plant checkout and star	Plant checkout and startup		
10	LAB complex (Lineal Alkyl Bencen	plex (Lineal Alkyl Bencene) <u>Client:</u> Indian Oil Corporation Limited (IOCL)		
	at Gujarat Refinery.			
	August 2004	04		
	Plant checkout and star	Plant checkout and startup		

UNIVERSITY COURSES

(Feb-2003 - July-2004)

Designation : University Professor

Claudio Passarella has conducted several courses in universities at Valencia city, Venezuela. Courses were: Linear Algebra, Differential Equations, C language Programming, Physics 1 and 2, Control Process of Chemical Plants, Multivariable Control Process, Industrial Process Automation and Graphics Programming of Industrial Control Processes. These courses were conducted at Alejandro de Humboldt University, José Antonio Páez University, Carabobo University and Instituto Universitario de Tecnología Valencia. All of them loated at Valencia city, Venezuela.

NEGROVEN (www.negroven.com)(Feb-2003 - July-2004)Designation : Project Engineer / Automation Specialist (Contractor)

A project for NEGROVEN plant at Valencia city, Venezuela, was achieved for design, implementation and startup of soft sensors based on neural network technology for online estimation of two quality indexes on a Foxboro I/A Series system.

The NEGROVEN plant main product is Carbon Black. It is a base material for manufacturing tires, plastic, ink and black rubbers.

PDVSA, S.A. (www.pdvsa.com) (Jan-1995 - Dec-2002)

Designation : Lead Project Engineer

Leader Engineer of the project "Oil Movement Changes for Reformulated Gasoline Management". The main objective of this project was to upgrade the current hardware and software platform of the Oil Movement area at PDVSA El Palito Refinery (Venezuela) in order to manage the big range of specification required by EPA for the of Reformulated Gasoline manufacturing. This project was oriented toward implementing PDVSA Business Model (ERP: Enterprise Resource Integration), which includes integration with Refinery Planning and Scheduling applications (like RPMS, PIMS, P-PIMS and REFSKED), process automation, optimization, data monitoring and validation, production accounting and plan/scheduling reconciliation and communication, Tank Information System, Automatic Line up at Oil Movement area, Tank Quality Integration and Order Movement management. Technology profile for this project includes the use of a Global Database, Blend Gasoline Quality Prediction Model, analyzers, UNIX, G2, Oracle and Client/Server applications. Project completion was planned for the end of 2001.

Achieved management activities included:

- 1.- Definition of project team.
- 2.- Identification of user needs.
- 3.- Project benefits estimation.
- 4.- Preparation and Management of suppliers and consultants contracts.
- 5.- Cost estimation, definition of project schedule and cash flow estimation/follow up.
- 6- Project control and follow up.
- 7.- Commercial offers revision/evaluation.

Achieved technical activities included:

- a.- Specifications definition, acceptance test and startup of TVL D4814 Computer Method implementation.
- b.- Specifications definition, acceptance test and startup analyzer measurement management and Lab sample quality reintegration for blends.
- c.- Specifications definition, acceptance test and startup of quality profile consistency checks, to validate/adjust Lab data to be used by software applications.
- d.- Specifications definition, acceptance test and startup of Remote Access facilities.
- e.- Specifications definition, acceptance test and startup for integration of PDVSA software and PDVSA Business Model within licensed Oil Movement applications.
- f.- Specifications definition, development, acceptance test and startup of user friendly software for PDVSA Quality Prediction Model, with interfaces for integration with Oil Movement applications.
- g.- Specification definition, acceptance test and startup of Oil Movement applications for El Palito Refinery (Digital Blender, Tank Information system, Blend Optimization and Supervisory system, Oil Movement Information system, Tank Quality Integration, Basic Application System Interface, Order Movement Management and Main/Backup application).
- h.- Training and ISO-9000 certification for user of all Oil Movement applications.

CORPOVEN, S.A. (www.pdvsa.com)	(Apr-1990 - Jan-1995)
PDVSA, S.A. (www.pdvsa.com) since January	1995
Designation : Unit Supervisor and Project Eng	Jineer

Unit Supervisor for Utilities and Oil Movement areas at Corpoven, S.A - El Palito Refinery (Venezuela). He was responsible of design, implementation, startup, commitment and maintenance of the Blend Optimization Supervisory System (BOSS), Oil Movement Information System (OMIS) and Energy Management System (EMS) within execution of the "Process Optimization" project.

Achieved activities included:

- a.- Design, Implementation and Startup of control applications for Boilers on a Foxboro I/A Series system. Also, training for system users was achieved to operators, supervisors and engineers. Developed and implemented strategies were:
 - Compensation by pressure and temperature in Boiler levels, Water and Vapor flows.
 - Boiler level control using three(3) and two(2) element schemes.
 - Boiler vapor temperature control using a PID loop and feed forwards related to Vapor Demand and Feed water flow variations.
 - Boiler Combustion Control related to excess of oxygen.
 - Master Pressure control for Vapor generation.

- Boiler Load Allocation strategy.
- b.- Specification definition for data acquisition interface regarding to telemetric tank monitoring and remote operation of Motorized Valves. These interfaces were installed on a Foxboro I/A Series system.
- c.- Design, implementation and startup of human interfaces for tank monitoring and Motorized Valves on a Foxboro I/A Series system. In addition, operators and supervisor training was achieved.
- d.- Definition of specifications for configuration of Oil Movement Information System (OMIS) packages.
- e.- Configuration and startup of the Blend Optimization Supervisory System (BOSS) licensed to FOXBORO company. Training for operators, engineers and supervisors were achieved on BOSS package.
- f.- Definition, development and implementation of the Corpoven Quality Prediction Model for gasoline blends in off-line planing and on-line operation. This facility was a PC development based on ANSI C language and it was also incorporated as part of BOSS package in a UNIX system.

CORPOVEN, S.A. (www.pdvsa.com)(Oct-1986 - Apr-1990)PDVSA, S.A. (www.pdvsa.com) since January 1995Designation : APC Engineer

Control Process Application Engineer at Corpoven, S.A. El Palito Refinery (Venezuela) in charge of: (a) revision and startup of wired and instrumentation signals for El Palito-Yagua Multiproducts Pipeline. This system controls gasoline, kerosene and diesel pump operations, and (b) design, implementation and startup of control applications on a TDC-2000 with a Honeywell-4500 computer for operation of Atmospheric Distillation, Vacuum Distillation, Cracking Reforming and Fluid Catalytic Cracking (FCC), Alquilation and treatment units.

(a) Activities at El Palito-Yagua Multiproducts Pipeline included design, installation and startup of control applications for El Palito-Yagua Multiproducts Pipeline, and operators/supervisors training. This work was achieved using Johnson Control software, installed on a MODCOMP computer.

The following applications were delivered:

- Automatic pump startup/shutdown sequence.
- Semiautomatic startup/shutdown sequences for pump station at source station and fuel reception at destination station.
- Automatic sequence for fuel line up and fuel swing at source and destination stations.
- Multiproduct Pipeline emergency shutdown sequence.
- On line pump swing sequence.
- Pressure control strategy at source station discharge and at reception of destination stations. The last ones included considerations for Multiproduct Pipeline startup.
- Totalization and monitoring of transferred volume at source and destination stations.
- (b) Design, implementation and startup of control applications on a TDC-2000 with a Honeywell-4500 computer, training for system users was achieved to operators, supervisors and engineers. Most of the control strategies developed were based on Honeywell BPL language. The following strategies were developed:
 - Furnace passes balancing.

- Feed distribution control on reactors.
- Flow, level and temperature control loops were implemented for pipes, heat exchanges and drums.
- Temperature control on extraction trays.
- Emergency shutdown sequence for Fluid Catalytic Cracking unit.
- Top/Bottom quality control on distillation towers with two outlets.
- Feed forward control on reactors, distillation towers and treatment units.
- Fuel Oil viscosity control.
- Constraint control.
- On line Calculations for Unit Efficiency and Production.
- History and reports configuration.

At the end of this period Mr. Passarella was enrolled as Control engineer into the project "Process Optimization" which included automation of all operations at El Palito Refinery. The initial works achieved were:

- 1.- Economic analysis and benefit estimation for implementation of new and current control strategies into new control systems at Oil Movement, Process and Utility areas.
- 2.- Transference of control strategies from TDC-2000 to TDC-3000 platform which included program translation from BPL to CL language.

At the end of this period Mr. Passarella was assigned to manage control strategies and developments in the Oil Movement and Utility areas.

D TRAINING:

	Course Name:	Institution:	<u>Duration</u>	Place and Dat
•	ATEX Awareness Training.	Petrofac Limited LTD.	4 hours	Sharjah, UAE. July 2011
•	Safety Life Cycle. IEC 61508, IEC 61511 review	SCE - Safety Control.	21 hours	Sharjah, UAE. July 2011
	Overview of Pressure European Directives (PED).	Petrofac Limited LTD.	4 hours	Sharjah, UAE. July 2011
•	Root Cause Analysis Training for Practitioners	Apollo Associated Services (Europe) LTD.	16 hours	Sharjah, UAE. March 2011
	DeltaV Primer	EMERSON Process Management.	16 hours	Dubai, UAE. August 2010
•	TÜV Rheinland SIS FS Engineer certified: 1125/08.	Honeywell.	32 hours	Madrid, Spain. February 2008
•	DRCS UOP Technology	UOP LLC.	32 hours	Des Plaines, US April 2007
	News about Foxboro I/A Series	Invensys.	32 hours	Caracas, Venezuela Julio 2003
	Fuels Oils Manufacturing	Japan Cooperation Center Petroleum	120 hours	Tokyo, Japan April 2002
	Rapid Application Development with Power++ 2-1	Sybase de Venezuela / BDT Base de Datos y Telemática, C.A.	40 hours	Valencia. Venezuela. October 1998
•	Introduction to Oracle SQL and PL/SQL	ORACLE de Venezuela.	40 hours	Caracas. Venezuela.
•	Foxboro System Version 4.0/4.2 Differences Seminar	The Foxboro Company.	16 hours	September, 199 Caracas. Venezuela. October 1997
•	Application Programmer's Environment	The Foxboro Company.	40 hours	Foxboro, Massachusetts. November 1996
•	Visual Basic Professional. Basic/Advanced Course.	Compuconsult	40 hours	Caracas. Venezuela. November 1996
•	Solaris 2.X System. Advanced Administration	Softrain, SunService.	24 hours	Caracas. Venezuela. Mayo 1996
•	The 50 Series Course.	The Foxboro Company.	40 hours	Foxboro, Massachusetts. April 1996
•	Computer's Networks.	Logiciel, S.R.L.	24 hours	Caracas. Venezuela.
•	Solaris 2.X System. Basic Administration	EMSCA	40 hours	October 1995 Caracas. Venezuela.
	UNIX Administration	CIED	32 hours	August 1995 Caracas.

Claudio Passarella's CV cpassarella@gmail.com

	Course Name:	Institution:	Duration	Place and Date
•	I Manufacturing Automation Workshop.	Corpoven, S.A.	16 hours	Puerto La Cruz. Venezuela. July 1995
•	MS EXCEL 4.0 Advanced Course.	Corpoven, S.A. / CAREP.	24 hours	El Palito. Venezuela. June 1995
•	MS EXCEL 4.0 Basic Course.	Corpoven, S.A. / CAREP.	40 hours	El Palito. Venezuela. May 1995
•	Near IR. Basic Course.	Intevep, S.A. /	16 hours	Los Teques. Venezuela. April 1995
•	Object Oriented Programming with C++.	Corpoven, S.A. / Paradigma, C.A.	32 hours	El Palito. Venezuela. May 1994
•	Object Oriented Software Engineering.	Corpoven, S.A. / Paradigma, C.A.	32 hours	El Palito. Venezuela. May 1994
•	Process Control Level III.	Corpoven, S.A. / Tulsa University	40 hours	Paraguaná. Venezuela. March 1994
•	Microsoft Project for Windows.	Corpoven, S.A.	16 hours	El Palito. Venezuela. March 1994
•	Reengineering Processes	Corpoven, S.A.	24 hours	El Palito. Venezuela. December 1993
•	Decisions and Problem analysis.	Corpoven, S.A. / Management Enterprises, C.A.	40 hours	San Tomé. Venezuela. October 1993
•	Oil Movement Information System (OMIS) engineering course.	The Foxboro Company.	24 hours	Baarn. Netherlands. November 1991
•	Blend Optimization Supervisory System (BOSS) engineering course.	The Foxboro Company.	40 hours	Baarn. Netherlands. September 1991
•	Oil Movement Information System (OMIS) introduction course.	The Foxboro Company.	40 hours	Baarn. Netherlands. July 1991
•	Energy Management Application Course.	The Foxboro Company.	24 hours	Baarn. Netherlands. May 1991
•	Blend Optimization Supervisory System (BOSS) software course.	The Foxboro Company.	40 hours	Baarn. Netherlands. April 1991
•	Blend Optimization Supervisory System (BOSS) introduction course.	The Foxboro Company.	24 hours	Baarn. Netherlands. April 1991
•	Informix-SQL.	SYS Ingeniería de Computación, C.A.	24 hours	Caracas. Venezuela. November 1990

	Course Name:	Institution:	Duration	Place and Date
	I/A Series Systems Tools and	The Foxboro	40 hours	Foxboro, MA.
•	Techniques.	Company.	40 11001 3	U.S.A.
				November 1990
•	I/A Series Systems Software Technologies.	The Foxboro Company.	40 hours	Foxboro, MA. U.S.A. October 1990
•	Unix Operating System.	Corpoven, S.A.	24 hours	Valencia. Venezuela. July 1990
•	Basic Computer Control Applications Course.	Corpoven, S.A. / ProControl, Inc.	80 hours	El Palito. Venezuela. May 1990
•	Control Engineer's Control Techniques.	Corpoven, S.A. / Profimatics, INC.	40 hours	El Palito. Venezuela. April 1990
•	Application Module Implementation.	Honeywell.	40 hours	Caracas. Venezuela. April 1990
•	Process Design Course.	Corpoven, S.A ./ Exxon.	80 hours	Puerto La Cruz. Venezuela. Marzo 1990
•	Honeywell TDC-3000 LCN Implantation.	Honeywell.	40 hours	Caracas. Venezuela. February 1990
•	VMS Advanced Technics.	Digital de Venezuela.	40 hours	Caracas. Venezuela. January 1990
•	VMS Commands and Utilities.	Digital de Venezuela.	40 hours	Caracas. Venezuela. January 1990
•	Advanced Configuration of Foxboro I/A Series System.	Equipex, S.A. / The Foxboro Company	40 hours	Caracas. Venezuela. September 1989
•	Basic Configuration of Foxboro I/A Series System.	Equipex, S.A. / The Foxboro Company	40 hours	Caracas. Venezuela. August 1989
•	Distillation Control	Equipex, S.A. / The Foxboro Company	40 hours	Caracas. Venezuela. November 1988
•	Ethyl Seminar C.F.R. Engine Operators.	Corpoven, S.A. / Ethyl Corporation.	24 hours	El Palito. Venezuela. October 1988
•	Seminar Process Control.	Maraven, S.A. / The Foxboro Company	40 hours	Cardón. Venezuela. February 1988
•	Seminar UOP FCC.	Corpoven, S.A. / UOP INC.	24 hours	El Palito. Venezuela. December 1987
•	Seminar UOP Merox.	Corpoven, S.A. / UOP INC.	24 hours	El Palito. Venezuela. November 1987

	Course Name:	Institution:	Duration	Place and Date
•	Computers in Refinery Design and Analysis.	Corpoven, S.A. / Tulsa University.	40 hours	El Palito. Venezuela. August 1987
•	Advanced Lotus	Corpoven, S.A.	40 hours	El Palito. Venezuela. August 1987
•	Dbase III+.	Corpoven, S.A	40 hours	El Palito. Venezuela. March 1987
•	Controlling the Effects of Pulsations and Fluid Transients in Industrial Plants.	Maraven, S.A. / Southwest Research Institute.	40 hours	Ciudad Ojeda. Venezuela. June 1985