

The purpose of this SAMPLE document is to show in the public domain a typical Conceptual SRS

for a "Letdown Station", developed by:

LIUTAIO "FUNCTIONAL SAFETY SERVICES"

For preparing this SAMPLE report, examples of industrial processes and typical process data was used in combination with

LIUTAIO experience.

However, when this report is prepared for a CUSTOMER, only the authorized or provided information by CUSTOMER will be used, and the report **WILL NOT BE** part of the public domain.

FS	Functional Safety	LIUTAI) - Consul	ting and Engineer	ing Services	
1	*	Doc No. 0418E30SD07 -	Rev.02	www.LiutaioCES.co	m Page 2 of	23
3	FORMER	CONCEPTUAL SRS	- LETDO	WN STATION – S	SAMPLE DOCUM	IEN
FS	Function	al Safety				
	Maximu	Table	of Conte	ents	C	5
	Ser Maximu	I Proave)			2	
1.	DOCUMENT PURP	OSE				3
2.	ABBREVIATIONS					3
3.	GLOSSARY					3
4.	REFERENCES					3
5.	(SRS) SAFETY REQU	JIREMENTS SPECIFICATION				4
	5.1 SIF TAG NUMBE	R AND SHORT DESCRIPTION			<u> </u>	4
	5.2 HAZARDOUS EVI	EN DESCRIPTION THAT THE SIF IS PR	OTECTING FROM.			4
	5.3 SIF RELATED PRO	DCESS DESCRIPTION, OPERATION AN	D ACTIONS TO AC	HIEVE THE REQUIRED FUNCT	IONAL SAFETY	4
	5.4 SIF Devices' Lis	тт				5
	5.5 SAFETY INTEGRI	TY TARGETS, CONSTRAINTS AND OT	HER REQUIREME	NTS		8
	5.5.1 Safe	ty integrity targets				8
	5.5.2 SIL v	erification Cons tra ints and de	fault values			8
	5. 5.3 Othe	r requirements				9
	5.6 ADDITIONAL INI	TIATORS AND INPUT CHANNELS DES	CRIPTION			9
	5.7 MANUAL SHUTE	OWN REQUIREMENTS				10
	5.8 STARTUP BYPAS	S REQUIREMENTS	<u> </u>			10
	5.9 SIF DECISION LO	OGIC AND CALCULATIONS				11
	5.10 INTERLOCK MAN	AGEMENT REQUIREMENTS				11
	5.11 Additional "Fi	NAL SAFETY ELEMENTS" (FSES) AN	d Output Chan	NELS DESCRIPTION		11
	5.12 RESET FUNCTION	REQUIREMENTS, ACTIONS AFTER S	HUT DOW NS AND,	OR BEFORE STARTUP		12
	5.13 OPERATION AND	DCS HMI, ALARMS AND EVEN ME	SSAGES			12
	5.14 INTEGRATION W	ITH CONTROL AND OPERATION STAF	RTUP			12
	5.15 "PROOF TEST" F	REQUIREMENTS AND USE OF MOS .				13
	5.16 FAULT DETECTIO	N CAPABILITIES (DIAGNOSTICS) AND	REQUIRED ACTIO	DNS		15
	5.16.1 Initio	tors", Input isolators and "Sa	fety Trip Alarn	n" (STA) to trip QSVs		15
	5.16.2 "Initi	ators" and Input isolators to t	rip ESVs			18
4	5.16.3 "Con	nmonLS" and respective Input	/Output c <mark>ard</mark> s	required diagnostics		18
	5.16.4 Outp	ut isolator <mark>s' requir</mark> ed diagnos	tics			19
	5.17 MAINTENANCE	PROVISIONS				19
	5.18 Adjustments A	and Modifications according to	O OPERATION MO	DES AND/OR THE PROJECT PI	HASES	21
APP	ENDIX A – 60-SIF-50	0 GPP HIGH-PRESSURE PROT	ECTION. LETD	OWN STATION (LDS) SI	IMPLIFIED DIAGRAM.	. 22
APP	ENDIX B – 60-SIF-50	0 GPP HIGH-PRESSURE PROT	ECTION, SIE D	ETAILED DIAGRAM		. 23

 Doc No. 0418E30SD07 - Rev.02
 www.LiutaioCES.com
 Page 3 of 23

 CONCEPTUAL SRS - LETDOWN STATION - SAMPLE DOCUMENT

1. Document purpose

The purpose of this sample document is to show in the public domain a typical "<u>Conceptual SRS</u>" for a "<u>Letdown Station</u>", developed by **LIUTAIO** "Functional Safety Services".

For preparing this SAMPLE report:

- a) Examples of industrial processes and typical process data was used in combination with **LIUTAIO** experience.
- b) "Safety Requirements Specification" (SRS) was developed according to reference [4], 0418D20SD04 Safeguarding requirements Sample Document, Rev.01.

However, **LIUTAIO** is a professional and serious company and when this report is prepared for a CUSTOMER, only the authorized or provided information by CUSTOMER will be used, and the report **WILL NOT BE** part of the public domain.

2. Abbreviations

Refer to sample document: 0418D10SD01 Abbreviations

This document additional abbreviations are:

- GPP Gas Processing Plant
- LDS Letdown Station
- FCR Field Control Room
- LCR Local Control Room

3. Glossary

Refer to sample document: 0418D10SD02 Glossary

4. References

- LIUTAIO Functional Safety Services
 0418D10SD01 Abbreviations Sample Document Rev.01
- [2] LIUTAIO Functional Safety Services 0418D10SD02 Glossary - Sample Document Rev.01
- [3] LIUTAIO Functional Safety Services 0418D18SD03 SIF General Design Background - Sample Document Rev.01
- [4] LIUTAIO Functional Safety Services <u>0418D20SD04</u> Safeguarding requirements - Sample Document Rev.01

SIF Tag: 60-SIF-500

Short description:

Gas Processing Plant inlet facilities protection against an overpressure operation scenario.

5.2 Hazardous even description that the SIF is protecting from

The Gas Processing Plant (GPP) inlet facilities operate at 7.0 Bar(g), processing gas from production gas wells.

In case of malfunction in one or more wells, or in the production well distribution network, then a big amount of gas can arrive to the GPP, creating a high-pressure operation condition.

To avoid GPP high-pressure operation scenario, high-pressure gas flow is routed through a "<u>Letdown Station</u>" (LDS) before arriving to GPP.

When the pressure @LDS outlet reaches 8.5 Bar(g), 60-SIF-500 shall close ALL safety valves @ LDS, to cut-off feed flow to GPP and therefore stops high-pressure operation condition.

5.3 SIF related process description, operation and actions to achieve the required functional safety

Refer to "<u>APPENDIX A</u>" for 60-SIF-500 simplified diagram for protection of GPP in case of high-pressure operation scenario.

GPP receives high-pressure gas from production gas wells for removing Sulphur, condensate and water; to produce dry gas for commercial distribution. GPP inlet facilities normally operate at 7.0 Bar(g), and this pressure is controlled by a control loop that manipulates all wells' choke valves and other compressors' loads and distribution valves inside the plant.

LDS is designed with four(4) pipe runs. Each run includes a "Quick Shutdown Valve" (QSD) and an "Emergency Shutdown Valve" (ESV). LDS design considered:

- a) To normally cut-off flow through LDS, all four(4) pipe runs safety valves shall close.
- b) **BUT** in the case one pipe run fails to close, a conventional PRV station is installed downstream of the LDS, which can handle full flow through just one pipe run.
- c) Flow cut-off through one(1) pipe run is successful if at least just one(1) ESV or QSV valve is closed.
- d) It is possible to operate LDS with only three(3) pipe runs, while one of them is "<u>Out of</u> <u>Service</u>" (OOS, isolated for MAINTENANCE purposes).
- e) Safety logic of each pipe run works independently of the safety logic of other pipe runs. It means, each pipe run safety logic decides when to close ESV and QSV valves independently of the other pipe runs,
- f) In the same pipe run, the safety logic to trip QSV valve is independent of safety logic to trip ESV valve, and vice-versa.
- g) In addition, the high priority trip 60-SIF-510 can trip ALL QSV and ESV valves.
- h) De-Energize to Trip philosophy is implemented.

e) The four(4) pipe runs work in 3004 safety architecture.
 By design, safety valves in ALL four(4) pipe runs shall close on demand, BUT it is considered that the required safety actions were achieved successfully if high-pressure gas flow is cut-off at least through three(3) pipe runs.

A conventional PRV station is installed downstream of the LDS, which can handle full flow through just one pipe run.

High Priority Trip 60-SIF-510 shall be able to close all QSV and ESV valves in LDS. Only interface between 60-SIF-500/510 is described in this document. Refer to 60-SIF-510 SRS for further information (**NOT** included in this Example development).

The 60-SIF-500 detailed diagram is shown in "APPENDIX B".

All pressure transmitters, solenoid valves and safety valves (ESV & QSV) are in ATEX zone 1 (classified area, safety area). This is the reason Isolators (Barriers) shall be used between field devices and other devices located in Non-classified areas like control room, Field Control Room (FCR), o Local Control Room (LCR).

5.4 SIF Devices' List

ш	Devier/a Tea	Device	Include Truste	Output	Inpu	t states	Device data	Davias Description
#	Device s Tag	Туре	Input Type	Туре	NORMAL	SAFE	purpose	Device Description
	60-PT-511	Initiator		4-20 ma	< 8.5 Bar(g)	≥ 8.5 Bar(g)	SIL & STR	Pipe Run 1, 2, 3 & 4
	60-PT-521			IS, HART,				Quick Shutdown
	60-PT-531			NAMUR NE 43				pressure
	60-PT-541							transmitter
2	60-XIB-511	Input	4-20 ma	4-20 ma	< 8.5 Bar(g)	≥ 8.5 Bar(g)	SIL & STR	Pipe Run 1, 2, 3 & 4
	60-XIB-521	2.4	IS, HART pass	HART pass		FS	Functi	Quick Shutdown
	60-XIB-531		through, loop	through,				pressure input
	60-XIB-541		powered,	NAMUR NE 43			Ma	Barrier/Isolator
	00 / 10 5 11		NAMUR NE 43				S.	Barrieryisolator
3	60-STA-511	Logic	4-20 ma	24 VDC 🥒	Energized	De-Energized	SIL & STR	Pipe Run 1, 2, 3 & 4
	60-STA-521		HART, loop			SIL 1		Quick Shutdown
	60-STA-531		powered,			SIL 2		Logic Solver
	60-STA-541		NAMUR NE 43			SILZ		
						SIL 3	Calific	
				1		511.4	-SC /	

Table 1 – 60-SIF-500 Devices' List

FS Functional Safety

LIUTAIO - Consulting and Engineering Services

Doc No. 0418E30SD07 – Rev.02 www.LiutaioCES.com Page 6 of 23

CONCEPTUAL SRS – LETDOWN STATION – SAMPLE DOCUMENT

#	E Device's Tag	Device		Output	Input	Input states		Device Description
#	Device S Tag	Туре	input rype	Туре	NORMAL	SAFE	purpose	Device Description
4	60-XOB-511 60-XOB-521 60-XOB-531 60-XOB-541	Output	24 VDC	24 VDC, IS, loop powered	Energized	De-Energized	SIL & STR	Pipe Run 1, 2, 3 & 4 Quick Shutdown pressure output Barrier/Isolator
	60-SOV-511 60-SOV-521 60-SOV-531 60-SOV-541	Output	24 VDC, IS	Pneumatic	Energized	De-Energized	SIL & STR	Pipe Run 1, 2, 3 & 4 SOV to Quick Shutdown Valve
e	60-QSV-511 60-QSV-521 60-QSV-531 60-QSV-541	FSE	Pneumatic	Se	Pressurized, Opened	De-Pressurized, Closed	SIL & STR	Pipe Run 1, 2, 3 & 4 Quick Shutdown Valve
7	60-PT-510 60-PT-520 60-PT-530 60-PT-540	Initiator	*	4-20 ma IS, HART, NAMUR NE 43	< 8.5 Bar(g)	≥ 8.5 Bar(g)	SIL & STR	Pipe Run 1, 2, 3 & 4 Shutdown pressure transmitter
8	60-XIB-510 60-XIB-520 60-XIB-530 60-XIB-540	Input	4-20 ma IS, HART pass through, loop powered, NAMUR NE 43	4-20 ma HART pass through, NAMUR NE 43	< 8.5 Bar(g)	≥ 8.5 Bar(g)	SIL & STR	Pipe Run 1, 2, 3 & 4 Shutdown pressure input Barrier/Isolator
	IC-60-PT-510 IC-60-PT-520 IC-60-PT-530 IC-60-PT-540	Input	4-20 ma HART pass through, loop powered, NAMUR NE 43	Logic Solver	< 8.5 Bar(g)	≥ 8.5 Bar(g)	SIL & STR	Pipe Run 1, 2, 3 & 4 Shutdown pressure input card
10	CommonLS	Logic			00		SIL & STR	Common Logic Solver
11	OC-60-PT-510 OC-60-PT-520 OC-60-PT-530 OC-60-PT-540	Output	Logic Solver	24 VDC	Energized	De-Energized	SIL & STR	Pipe Run 1, 2, 3 & 4 Shutdown pressure output card
12	60-XOB-510 60-XOB-520 60-XOB-530 60-XOB-540	Output	24 VDC	24 VDC, IS, loop powered	Energized	De-Energized	SIL & STR	Pipe Run 1, 2, 3 & 4 Shutdown pressure output Barrier/Isolator
13	60-SOV-510 60-SOV-520	Output	24 VDC, IS	Pneumatic	Energized	De-Energized	SIL & STR	Pipe Run 1, 2, 3 & 4 SOV to Shutdown
	60-SOV-540	4		C	0	F5	Functi	
14	60-ESV-510 60-ESV-520 60-ESV-530 60-ESV-540	FSE	Pneumatic		Pressurized, Opened	De-Pressurized, Closed SIL 1 SIL 2 SIL 2 SIL 3	SIL & STR	Pipe Run 1, 2, 3 & 4 Shutdown Valve
	C	S				511.4	5to.	V

Copyright © 2018 LIUTAIO Consulting and Engineering Services

ES. EIT	Device	Safety	Output	Input	t states	Device data	Device Description	
# Device's Tag	З Туре	Input Type	Туре	NORMAL	SAFE	purpose		
15 OC-60SIF510-	01 Support	Logic Solver	24 VDC	Energized	De-Energized	ONLY STR	Pipe Run 1, 2, 3 & 4	
OC-60SIF510-	02						High Priority Trip	
OC-60SIF510-	03	/		10			60-SIF-510	
OC-60SIF510-	04						output card	
SIL 2				01				

Description of column "Device Type" in Table 1:

- Initiator Device that is directly measuring the process variable that can initiate the SIF action.
- Input Device included in the safety input channel, or initiator of the SIF.
- Logic SIF's Logic Solver.
- Output Device included in the safety output channel.
- FSE Final Safety Element

For Initiators and Trip settings, refer to Table 1.

5.5.2 SIL verification Constraints and default values

Table 3 shows required design constraints and default values for "SIL verification".

Table 3 – 60-SIF-500 SII	verification	Constraints	and	default	values
1001C 5 00 511 500 51L	verijieation	constraints	unu	acjuun	varacs

No	Description	Abbreviation	Default value	Constraint value	Remark
1	Description	Abbiendion	12 months	\geq 4 months	Kennark
2	Proof Test Period	TI	12 months	≥ 6 months	ONLY for QSV and ESV valves.
3	Service Life	SLf	10 years		
4	Mean Time To Restoration	MTTR	72 hours	≥ 72 hours	
5	Proof Test Duration	TD	4 hours	≥ 4 hours	
6	Mean Repair Time	MRT	24 hours	≥ 24 hours	

Other constraints shall include:

- 1) Regarding to calculation of Beta values for "Common Cause Failure" (CCF) effect:
 - a) For any "Decision Logic" or "Safety Channel Architecture" (SCA) equal to "XooN(D)" (N>X and N>1), the CCF effect MUST BE calculated. ZERO(0.0) values ARE NOT accepted for CCF effect and respective "Beta" (β) values.

CCF effect is ZERO(0.0) ONLY for 1001D and ""NooN" logics.

- b) Default methodology to calculate Beta values for "Common Cause Failure" (CCF) effect shall be IEC-61508-6, Annex D.
- c) To estimate the CCF effect the "Geometric Average" is the default method to estimate the combined failure rates from devices.

In a group of devices to consider for CCF effect calculation, when one or some of them has "Dangerous" failure rate ($\lambda_{DD}/LdDD$, ($\lambda_{DU}/LdDU$) value(s) equal to ZERO(0.0) and other devices **DO NOT**, then the "<u>Geometric Average</u>" shall be applied ONLY to the failure rate values other than ZERO(0.0).

d) When devices with different "<u>Proof Test Periods</u>" (TI) are involved in the same "<u>Proof Test</u>", the CCF effect calculation **MUST BE** done to force the CCF's TI to meet each device's TI value.

 Doc No. 0418E30SD07 - Rev.02
 www.LiutaioCES.com
 Page 9 of 23

 CONCEPTUAL SRS - LETDOWN STATION - SAMPLE DOCUMENT

5.5.3 Other requirements

Functional Safety

FS

Other requirements for this SIL verification assessment are described in the following list:

- 1) "<u>SIL verification</u>" calculations **MUST** consider individual failures of all devices, as well as all possible combined failures, that will make 60-SIF-500 to fail on demand.
- 2) By default, "<u>SIL verification</u>" shall consider "Fault Detection Capabilities" (Diagnostics) for "<u>Common Logic Solver</u>" (CommonLS) and Input/Output cards.
- 3) If target SIL rating is no satisfied, propose possible actions/solutions to improve the design of 60-SIF-500.
- 4) The indicate methodology in above section 5.5.2 point "1.b" shall be used to calculate Beta values for the following cases:
 - <u>SIF simple</u> Design/Installation quality is representative of high Beta values (or Worst values).
 - <u>SIF enhanced</u> Design/Installation quality is representative of low Beta values (or best values).

And, "SIL verification" shall be developed by calculating and reporting "Beta" values (β, β_D) corresponding to <u>BOTH</u> the **Simple** (Greater CCF effect) and the **Enhanced** (Lower CCF effect) SIF's Design/Installation cases.

- 5) Verify SIL rating in the cases of SIF's **simple** and **enhanced** implementation quality, but with **NO** Maintenance effect (MTTR, TD, MRT all equal to 0.0 hours).
- 6) Verify SIL rating in the same condition as described in above point No.5), but including Maintenance effect (MTTR, TD, MRT).
- 7) For above point No.6), calculate the SIF's "STRavg" (and "MTTRspurious") in the following cases:
 - a) When during normal operation, a "Spurious Trip" occurs in one(1) pipe run.
 - b) When during normal operation, a "Spurious Trip" occurs in two(2) pipe runs (**NOT** necessarily at the same time).

5.6 Additional Initiators and Input Channels description

Refer to above Table 1 (60-SIF-500 Devices' List) and "APPENDIX B" (SIF detailed diagram).

The "Initiators":

- 60-PT-511/521/531/541 to trip the QSV valves, and
- 60-PT-510/520/530/540 to trip the ESV valves,

are Smart pressure transmitter (PT), qualified for safe area ATEX Zone 1, intrinsically safe, NAMUR NE 43 capable.

Each PT shall be installed in an instrument manifold that allows MAINTENANCE personnel to:

• Isolate PT from process operation.

Copyright © 2018 LIUTAIO Consulting and Engineering Services

 Doc No. 0418E30SD07 - Rev.02
 www.LiutaioCES.com
 Page 11 of 23

 CONCEPTUAL SRS - LETDOWN STATION - SAMPLE DOCUMENT

FS 5.9 SIF Decision Logic and Calculations

60-SIF-500 includes five(5) "Logic Solvers":

- a) The "<u>Common Logic Solver</u>" (CommonLS) to handle four(4) "<u>Decision Logics</u>" that monitor four(4) "Initiators" 60-PT-510/520/530/540 to trip the shutdown valves
- 60-ESV-510/520/530/540, respectively, and
- b) Four(4) additional "Safe Trip Alarm" (STA, Logic Solver) modules to monitor the "Initiators" 60-PT-511/521/531/541 to trip the quick shutdown valves 60-QSV-511/521/531/541, respectively.

When one pressure transmitter in a pipe run initiates a demand to close (SAFE state) the related safety valve, "CommonLS" shall close (SAFE state) the related safety valve associated to the other pressure transmitter in the same pipe run.

If a GPP shutdown happens that cuts the normal gas processing flow inside GPP, then high priority trip 60-SIF-510 activation happens, and this action shall initiate a 50-SIF-600 demand to close (SAFE state) ALL LDS safety valves as well.

5.10 Interlock management requirements

N/A

5.11 Additional "Final Safety Elements" (FSEs) and Output Channels description

ALL "<u>Quick Shutdown Valves</u>" (QSV) and "<u>Emergency Shutdown Valves</u>" (ESV) shall include magnetic limit switches, to detect the closed, opened and travelling valve position. These magnetic limit switches shall be connected to DCS.

Both QSV and ESV per pipe run are valves of the same size, but with different actuators. QSV shall close faster than ESV.

Each of the "Output Isolators":

- 60-XOB-511/521/531/541 to trip the QSV valves, and
- 60-XOB-510/520/530/540 to trip the ESV valves,

Shall have:

- a) Output to Zone 0 or 1. Output with Loop powered mode.
- b) 1-channel input.
- c) 1-channels output connected to the respective safety valve (QSV or ESV) solenoid (SOV).

Each "<u>Output Isolator</u>" shall be configured to trip in case a "<u>Dangerous Detected</u>" failure occurs. Refer to below section 5.16.4 for further details.

	.2		FDavg	
SIL1				
SIL 2		4		
	640°			

5.12 Reset function requirements, actions after shutdowns and/or before startup

Refer to references [3] and [4] for "Reset function" description.

One(1) "<u>Manual Reset</u>" (soft-button) shall be implemented in the "<u>Common Logic Solver</u>" (CommonLS) for each LDS pipe run (total 4 buttons). This soft-button HMI shall be implemented in DCS console. Refer to Table 5 for Reset buttons tags.

One "Reset Logic" shall be implemented in the "CommonLS" for each emergency shutdown valves 60-ESV-510/520/530/540, and for each quick shutdown valve 60-QSV-511/521/531/541.

In addition, for each quick shutdown valve 60-QSV-511/521/531/541:

- a) The "<u>Manual Reset</u>" (MR) functionality shall be activated in the "<u>Safe Trip Alarm</u>" (STA, Logic Solver) 60-STA-511/521/531/541, respectively, to allow STA to perform the "<u>Reset</u> <u>Logic</u>" functionality by external "<u>RESET command</u>" from "CommonLS",
- b) The respective STA "<u>RESET command</u>" signal shall be wired from the "CommonLS" output card to the respective STA module (MR contact). This connection shall be normally De-Energized (NDE).

ALL "Reset Logic" output signals from "CommonLS" shall be in SAFE state after power up.

"CommonLS" and ALL STA modules 60-STA-511/521/531/541 shall be power up at the same time. STA module shall be configured to retain output in SAFE state (De-Energized) for 5 min after STA power up. In this way, it is guarantee that all quick shutdown valve will remain in SAFE state after "CommonLS" and STA modules power up.

5.13 Operation and DCS HMI, alarms and even messages

Refer to section 4.2.13 in document: (reference [3]) 0418D20SD04 Safeguarding requirements - Sample Document

5.14 Integration with Control and operation startup

Before commissioning, ALL "Letdown Station" (LDS) pipe runs shall be isolated and "Out Of service" (OOS state) to facilitate the installation and local testing of LDS instruments.

During LDS commissioning, Console Operator shall dismiss OOS state in all selected pipe runs ready to startup, and ALL safety valves of selected pipe runs shall be closed (SAFE state).

Before LDS startup and GPP feed up, wells' production flowlines network and the "Gas Processing Plant" GPP shall be equalized in pressure and ready to feed up (equal LDS input/output pressure). This is the initial plant safeguarding condition (PERMISSIVE) to initiate LDS startup to open the LDS safety valves.

Once LDS PERMISSIVE is satisfied, to start each LDS pipe run, the Console Operator shall apply Reset to the pipe run and the related safety valves (QSV and ESV) shall open (NORMAL state). Next, the Console Operator can initiate GPP feed up by opening wells' choke valves.

In case of GPP shutdown, the production wells' choke valves shall be trip as well. In this condition, LDS shall trip only if the settle down pressure of the wells' production flowlines network is at or above 8.5 Bar(g). IF LDS trips, follow the above described procedure to re-start LDS.

If an LDS pipe run "Spurious Trip" occurs, both pipe run safety valves will close (SAFE state) and will remain in the closed position. In this case:

a) If other pipe runs are still running in normal operation (GPP is still running), LDS PERMISSIVE is still satisfied, and Console Operator shall apply Reset to the trip pipe run and the safety valves (QSV and ESV) shall open (NORMAL state).

b) <u>If other pipe runs also trip and GPP also trip</u>, LDS PERMISSIVE **IS NOT** still satisfied, and Console Operator shall follow above described procedure for LDS startup and GPP feed up.

5.15 "Proof Test" requirements and use of MOS

Refer to section 4.2.14, in document (reference [3]) 0418D20SD04 Safeguarding requirements for further MOS information and requirements.

A total of Eight(8) different "<u>Proof Tests</u>" can be performed in the "<u>Letdown Station</u>" (LDS). Independent "<u>Proof Test</u>" shall be performed for:

- 1) Each series of devices that trip the quick shutdown valve 60-QSV-511/521/531/541, and
- 2) For "CommonLS" and each series of devices that trip the shutdown valve 60-ESV-510/520/530/540.

For "Proof Test" description of High Priority Trip 60-SIF-510, involving all LDS safety valves, **IS NOT** included in this document. Refer to 60-SIF-510 SRS for further information (**NOT** included in this Example development).

It shall be considered that the command to Trip the safety valve from the "Initiator" under testing will be issued once the "CommonLS" receives the trip signal.

NOTE: when a "Proof Test" is performed in a pipe run "Initiator", once the "CommonLS" receives the trip signal, the command to close both safety valves (QSV and ESV) in the same pipe run shall be issued simultaneously. Refer to above sections 5.3 (SAFE state) and 5.9.

ONLY "Full Valve Stroke Test" (FVST) will be applied to any QSV or ESV.

"Proof Test" can be applied even though while any other pipe run is in "Out Of service" (OOS) state and isolated for MAINTENANCE purposes.

NO manual shutdown soft-button shall be provided when "Proof Test" is in progress. 60-SIF-600's SRT is too short (15 sec) to allow Console Operator to manually initiate a SIF demand that can avoid the Hazard the SIF is protecting from.

See Table 4 for associated MOS tag for each SIF "Proof Test".

ALL SAFETY and PERMISSION procedures **MUST BE** completed and approved before executing any "<u>Proof Test</u>". Only one(1) "<u>Proof Test</u>" can be executed at the time. During "Proof Test" execution ALL other "Initiator" and SIF devices shall be working in normal condition.

 Doc No. 0418E30SD07 - Rev.02
 www.LiutaioCES.com
 Page 14 of 23

 CONCEPTUAL SRS - LETDOWN STATION - SAMPLE DOCUMENT

If another MOS is active in the same "MOS Group" where 60-SIF-500 is located, then **NO** "Proof Test" can be executed in 60-SIF-500.

The steps to execute a "Proof Test" (to trip QSV or ESV) are as follow:

1) Activate related MOS tag.

Associated safety valve **MUST** remain opened (NORMAL state).

The pressure transmitter under testing still can send trip signal to close safety valve.

NOTE: ONLY while the MOC tag is activated, a soft-button shall be available for "Console Operator" to let this person to close the safety valve at any time if it is required. Refer to Table 4.

 MAINTENANCE personnel shall manually isolate and pressurize the "Pressure Transmitter" (PT) to test.

NOTE: PT signal value change **MUST BE** tested above and below trip setting value.

NOTE: MAINTENANCE personnel shall verify that PT measurement is equal to the kit supplied pressure. If this **IS NOT** true, then the test shall be manually declared "**Unsuccessful**", and MAINTENANCE shall repair or replace PT.

NOTE: Refer to above section 5.6. Manual manipulation of the instrument manifold **SHALL NOT** make 60-PT-511/521/531/541 to trip.

3) When the PT signal value reaches the required trip setting, the associated safety valve shall close (SAFE state), and "CommonLS" shall close the other safety valve in the same pipe run.

The "Proof Test" Fail/Success completion criteria shall be:

- SUCCESSFUL when:
 - a) Both safety valves in the pipe run DID close before respective "Safety Response Time" (SRT) expires, and
 - b) Both: safety valve under testing and the other safety valve in the same pipe run, shall return to fully opened position (NORMAL state) after PST time expires, without applying "<u>RESET command</u>".

• UNSUCCESFUL when any safety valve in the pipe run:

- a) Any safety valve in the pipe run:
 - DID close after respective "Safety Response Time" (SRT) expires, or
 - **DID NOT** leave the fully opened position, or
 - **DID NOT** open fully after "<u>Process Safety Time</u>" (PST) expires, without applying "<u>RESET command</u>".
- FAIL SAFE when while "Proof Test" was in progress:
 - a) High Priority Trip 60-SIF-510 initiates a demand.
 - b) A demand is initiated by the other pressure transmitter in the same pipe run where the "Proof Test" is in progress.
 - c) A demand is initiated by any other mean, other than the pressure transmitter under testing.

NOTE: for application of this step, LDS startup PERMMISSIVE shall not apply, because GPP is already running. Refer to section 5.14.

 Doc No. 0418E30SD07 – Rev.02
 www.LiutaioCES.com
 Page 15 of 23

 CONCEPTUAL SRS – LETDOWN STATION – SAMPLE DOCUMENT

4) IF the "Proof Test" was "Successful", then continue with next step. ELSE, MAINTENANCE shall determine which device(s) in the test failed and fix the fault before the valve's "Mean Time To Restoration" (MTTR).

- SIL 1 5) SIL 2 SIL 3
 - 5) MAINTENANCE personnel shall re-establish the PT normal operation conditions. This MAINTENANCE activity **MUST NOT** initiate a trip.
 - 6) De-Activate related MOS tag, and both safety valves (QSV & ESV) in the pipe run shall remain closed (SAFE state).

"<u>Proof Test</u>" shall be monitored in DCS, but not initiated from DCS or control room. 60-SIF-500 "<u>Proof Test</u>" implementation support in DCS shall monitor the test and generate test report/record. Refer to section 4.2.15.1 in document (reference [3]) 0418D20SD04 "Safeguarding requirements" for further information.

5.16 Fault detection capabilities (Diagnostics) and required actions

This section is organized in the following sub-sections:

- 1) Initiators", Input isolators and "Safety Trip Alarm" (STA) to trip QSVs.
- 2) "Initiators" and Input isolators to trip ESVs.
- 3) "CommonLS" and respective Input/Output cards required diagnostics
- 4) Output isolators' required diagnostics.

5.16.1 Initiators", Input isolators and "Safety Trip Alarm" (STA) to trip QSVs

Each device:

- PTs 60-PT-511/521/531/541,
- Input isolators 60-XIB-511/521/531/541, and

shall be configured to set the device output in SAFE state when a device "Diagnostics" detects that a "<u>Detected Failure</u>" occurred. This failure condition shall be communicated up to the STA module according to NAMUR NE 43.

In addition, the "Safety Trip Alarm" (STA) modules 60-STA-511/521/531/541 shall:

- a) After a demand (from PT or own STA failure), keep the output in SAFE state (QSV closed), even though when this device in failure is back in normal condition or PT signal is back in NORMAL state. This STA output **MUST** remain in SAFE state until "<u>Reset command</u>" is applied via STA's MR connection.
- b) Include input failure detection, to be capable to detect when the input signal from PT and/or input isolators is in failure state (NAMUR NE 43),
- c) But **DO NOT** trip the related QSV valve,
- d) Indicate "CommonLS" and DCS (Console Operator) that a "<u>Detected Failures</u>" happened, via the "Fault Relay" contact, and
- e) Apply automatically MOS functionality. Refer to section 4.2.15, in document (reference [3]) 0418D20SD04 Safeguarding requirements for further MOS information.

 Doc No. 0418E30SD07 - Rev.02
 www.LiutaioCES.com
 Page 16 of 23

 CONCEPTUAL SRS - LETDOWN STATION - SAMPLE DOCUMENT

Table 4 – Required MOS logics per SIF device, or "Input/Output Channel" "Proof Test" MOS Tag (2) **Device's Tag** Fail/Success **Device Description** # Туре Manual Tag(3) Criterion 60-PT-511 Initiator MAINTENANCE Quick shutdown pressure transmitter 60-XIB-511 Input personnel shall Quick shutdown pressure input isolator manually isolate 60-STA-511 Quick shutdown Logic Solver Logic QSV and pressurize 60-60-XOB-511 Output Quick shutdown pressure output isolator PT-511. (1) 60-SOV-511 Output SOV to Quick shutdown valve 60-MOS-511 Run 1 60-QSV-511 FSE Quick shutdown valve 1 When pressure 60-HS-511 Pipe reaches trip setting, 60-QSV-511 shall reach the fully closed position in less than 15 sec. 60-PT-521 Initiator MAINTENANCE Quick shutdown pressure transmitter Quick shutdown pressure input isolator personnel shall 60-XIB-521 Input manually isolate 60-STA-521 Logic Quick shutdown Logic Solver QSV and pressurize 60-60-XOB-521 Output Quick shutdown pressure output isolator PT-521. (1) 60-SOV-521 Output SOV to Quick shutdown valve 60-MOS-521 Run 2 60-QSV-521 FSE Quick shutdown valve 2 When pressure 60-HS-521 Pipe reaches trip setting, 60-QSV-521 shall reach the fully closed position in less than 15 sec. 60-PT-531 Initiator MAINTENANCE Quick shutdown pressure transmitter 60-XIB-531 personnel shall Input Quick shutdown pressure input isolator manually isolate 60-STA-531 Logic Quick shutdown Logic Solver Pipe Run 3 QSV and pressurize 60-60-XOB-531 Output Quick shutdown pressure output isolator PT-531. (1) 60-SOV-531 SOV to Quick shutdown valve Output 60-MOS-531 60-QSV-531 FSE Quick shutdown valve 3 When pressure 60-HS-531 reaches trip setting, 60-QSV-531 shall reach the fully closed position in less than 15 sec. MAINTENANCE 60-PT-541 Initiator Quick shutdown pressure transmitter personnel shall 60-XIB-541 Input Quick shutdown pressure input isolator 60-STA-541 Logic manually isolate Quick shutdown Logic Solver and pressurize 60-Run 4 QSV 60-XOB-541 Output Quick shutdown pressure output isolator PT-541. (1) 60-SOV-541 SOV to Quick shutdown valve Output 60-MOS-541 60-QSV-541 FSE Quick shutdown valve 4 When pressure 60-HS-541 Pipe I reaches trip setting, 60-QSV-541 shall FS reach the fully closed position in less than 15 sec.

SIL 1

LIUTAIO - Consulting and Engineering Services

Doc No. 0418E30SD07 - Rev.02 www.LiutaioCES.com Page 17 of 23 **CONCEPTUAL SRS – LETDOWN STATION – SAMPLE DOCUMENT**

F	S _#	Device's Tag	Туре	MOS Tag (2) Manual Tag(3)	" <u>Proof Test</u> " Fail/Success Criterion		Device Description
		60-PT-510	Initiator	1	MAINTENANCE personnel shall		Emergency shutdown pressure transmitter
5	L1	60-XIB-510	Input		manually isolate and pressurize 60-	>	Emergency shutdown pressure input isolator
SI	L2	IC-60-PT-510	Input	60 1406 540	PT-510. (1)	ES	Emergency shutdown pressure input card
S	5	CommonLS	Logic	60-IVIOS-510		n 1	Emergency shutdown Logic Solver
5	2	OC-60-PT-510	Input	60-HS-510	When pressure reaches trip setting.	e Ru	Emergency shutdown pressure Output
		60-XOB-510	Output		60-ESV-510 shall reach the fully	Pip	Emergency shutdown pressure output isolator
		60-SOV-510	Output		closed position in	1	SOV to Emergency shutdown valve
		60-ESV-510	FSE		less than 15 sec.	6	Emergency shutdown valve
		60-PT-520	Initiator	60-MOS-520 60-HS-520	MAINTENANCE personnel shall		Emergency shutdown pressure transmitter
	6	60-XIB-520	Input		manually isolate and pressurize 60-	>	Emergency shutdown pressure input isolator
		IC-60-PT-520	Input		PT-520. (1)	ES	Emergency shutdown pressure input card
		CommonLS	Logic			n 2	Emergency shutdown Logic Solver
		OC-60-PT-520	Input		When pressure reaches trip setting,	oe Ru	Emergency shutdown pressure Output card
		60-XOB-520	Output		60-ESV-520 shall reach the fully	Pip	Emergency shutdown pressure output isolator
		60-SOV-520	Output		closed position in		SOV to Emergency shutdown valve
		60-ESV-520	FSE		less than 15 sec.		Emergency shutdown valve
	μ.	60-PT-530	Initiator		MAINTENANCE	2	Emergency shutdown pressure
					personnel shall		transmitter
		60-XIB-530	Input		manually isolate		Emergency shutdown pressure input
					and pressurize 60-	S	isolator
		IC-60-PT-530	Input	60-MOS-530	PT-530. (1)	ŝ	Emergency shutdown pressure input card
	7	CommonLS	Logic		When process	n	Emergency shutdown Logic Solver
		OC-60-PT-530	Input	60-HS-530	reaches trip setting,	pe R	Emergency shutdown pressure Output card
		60-XOB-530	Output		60-ESV-530 shall reach the fully	ē	Emergency shutdown pressure output isolator
		60-SOV-530	Output		closed position in		SOV to Emergency shutdown valve
		60-ESV-530	FSE 🔍		less than 15 sec.		Emergency shutdown valve
		6 0-PT-5 40	Initiator	0	MAINTENANCE personnel shall		Emergency shutdown pressure transmitter
		60-XIB-540	Input	5	manually isolate and pressurize 60-	~	Emergency shutdown pressure input isolator
	1	IC-60-PT-540	Input		PT-540. (1)	ES	Emergency shutdown pressure input card
	0	CommonLS	Logic	60-MOS-540		n 4	Emergency shutdown Logic Solver
	8	OC-60-PT-540	Input	60-HS-540	When pressure reaches trip setting,	oe Ru	Emergency shutdown pressure Output card
		60-XOB-540	Output	1	60-ESV-540 shall reach the fully	Pip	Emergency shutdown pressure output isolator
		60-SOV-540	Output		closed position in		SOV to Emergency shutdown valve
		60-ESV-540	ESE		less than 15 sec.		Emergency shutdown valve

Only one(1) MOS can be "Activated" at the time, or none if other MOS are already activated in Note 2: the same "MOS Group".

Tag of soft-button that ONLY shall be available for Console Operator when the MOC tag is Note 3: activated. Console Operator can use this sift-button to manually close the associated safety valve.

SIL 1 SIL 2 SIL 3 SIL 4 Tringent

Functional Safety

FS

 Doc No. 0418E30SD07 - Rev.02
 www.LiutaioCES.com
 Page 18 of 23

 CONCEPTUAL SRS - LETDOWN STATION - SAMPLE DOCUMENT

5.16.2 "Initiators" and Input isolators to trip ESVs

The devices:

- PTs 60-PT-510/520/530/540,
- Input isolators 60-XIB-510/520/530/540, and

shall be configured to set the device output in SAFE state when a device "Diagnostics" detects that a "<u>Detected Failure</u>" occurred. This failure condition shall be communicated up to the "CommonLS" according to NAMUR NE 43.

This means that when a "<u>Detected Failure</u>" happens in any of the above devices, "CommonLS" shall:

- a) Indicate DCS (Console Operator) that a "<u>Detected Failures</u>" happened in any of the related devices in the input channel.
- b) **DO NOT** trip the related ESV valve, and
- c) Apply automatically MOS functionality. Refer to section 4.2.15, in document (reference [3]) 0418D20SD04 Safeguarding requirements for further MOS information.

5.16.3 "CommonLS" and respective Input/Output cards required diagnostics

The "Common Logic Solver" (CommonLS) and respective Input/Output cards shall include:

- a) "Fault detection capabilities" (Diagnostics).
- b) Pre-configured functionality to allow:
 - "CommonLS" to make decisions according to "Diagnostic" results.
 - To show (or transmit) statuses in DCS (Console Operator), about operation and "Diagnostic" statuses of all SIF devices connected to "CommonLS".

ONLY the input card:

- c) **SHALL NOT** trip the related safety valve when a "<u>Detected Failure</u>" occurs in the same input card, or as described in previous sections 5.16.1 and 5.16.2. In this case, MOS automatically applies where it is required.
- d) **SHALL NOT** trip the related safety valve when a "<u>Detected Failure</u>" occurs in the associated "Initiator" or input isolator (NAMUR NE 43).

ONLY the "Common Logic Solver" (CommonLS) shall include:

- e) Additional circuitry to allow this device to perform the 1001D "Decision Logic".
- f) To trip ALL LDS's safety valves when a "Detected Failure" occurs in the "CommonLS".

ONLY the CommonLS's Output cards shall include:

- g) Additional circuitry to allow this device to perform the 1001D "Decision Logic".
- h) To trip the related ESV valve when a "Detected Failure" occurs in the output card.

For CommonLS's Output cards related to High Priority Trip 60-SIF-510:

- i) Same requirements for other output cards in 60-SIF-500 apply.
- j) In addition, when the STA module opens its output circuit (set output in SAFE state) to close the related QSV valve, the "CommonLS" is notified when the related High Priority Trip output card detects that the output circuit is opened.

 Doc No. 0418E30SD07 - Rev.02
 www.LiutaioCES.com
 Page 19 of 23

 CONCEPTUAL SRS - LETDOWN STATION - SAMPLE DOCUMENT

5.16.4 Output isolators' required diagnostics

Since "Diagnostcs" in devices 60-XOB-510/520/530/540 or 60-XOB-511/521/531/541 **CANNOT** avoid a "Spurious Trip" when a "Safe Detected" failure occurs in the referred isolator, then design decision is to configure ALL "Output Isolators" to trip when a "Detected Failure" occurs (Safe or Dangerous) in the failed isolator.

In this way:

- a) The output isolator in failure shall De-Energize output (SAFE state), to close the respective safety valve 60-ESV-510/520/530/540 or 60-QSV-511/521/531/541.
- b) Console Operator is notified via direct connection to DCS.
- c) Both QSV and ESV valves in the same pipe run shall close. Refer to sections 5.3, 5.9 and 5.15 for further information.
- d) "Reset Logic" is applied to keep in SAFE state (closed valve):
 - Isolator that was in failure, when it is fixed and back in normal operation, and
 - The other isolator in the same pipe run. Refer to sections 5.3, 5.9 and 5.15 for further information.

Refer to references [3] and [4] for "Reset function" further description.

e) It is the Console Operator responsibility to put back in operation the affected pipe run, by pressing related "Reset Button" to release "Reset Logic".

NOTE: implementation shall be able to notify Console Operator (DCS) which "Output Isolator" failed, and which safety valve was trip first.

5.17 Maintenance provisions

Refer to:

- Table 5 for 60-SIF-500 description of basic facilities for MAINTENANCE.
- Section 4.2.17, document (reference [4]) 0418D20SD04 Safeguarding requirements for further information.

60-SIF-500 installation shall be done in such a way that:

- 1) When a pipe run is "Out Of Service" (OOS), MAINTENANCE personnel shall be able to manually command Open/Close of the pipe run QSV and ESV valves independently.
- 2) Power supply shall come from the same source for "<u>Common Logic Solver</u>" (CommonLS) and the "<u>Safe Trip Alarm</u>" (STA, Logic Solver) modules. If power supply fails, or it is cut for maintenance purposes, then both "CommonLS" and STA modules' outputs will be set in SAFE state.
- 3) In addition, a breaker shall be installed for MAINTENANCE purposes to supply power to each STA module, to allow to cut STA power supply independently of the "CommonLS".
- To power up "CommonLS" and ALL STA modules 60 STA 511/521/531/541 at the same time.

STA module shall be configured to retain output in SAFE state (De-Energized) for 5 min after STA power up. In this way, it is guarantee that all quick shutdown valve will remain in SAFE state after "CommonLS" and STA modules power up.

5) To power up first the "CommonLS", and after a delay of about 5.0 min to power up the STA modules. This requirement will guarantee that ALL quick shutdown valves 60-QSV-511/521/531/541 remain in SAFE state after power up.

During normal operation ALL LDS's safety valves are opened. Nevertheless, ONLY one of the pipe run can be set "<u>Out Of Service</u>" (OOS) for MAINTENANCE purposes, isolated and safety valves closed. MAINTENANCE shall be able to command position of safety valves in this condition.

NOTE: it is MAINTENANCE and OPERATION responsibility to leave the pipe run safety valves in the closed position (SAFE state) before clear isolation and set pipe run back in normal operation.

	#	Device's Tag	Туре	MOS Tag (2)(3)	OSS Tag (1)(5) Reset button Tag	5	Remarks
		60-PT-511	Initiator			SV	
		60-XIB-511	Input			Ő	
	1	60-STA-511	Logic 💎	60-MOS-511		2	
	1	60-XOB-511	Output	00-10103-511		Ru	Longer time
	1	60-SOV-511	Output			be	MAINTENANCE
		60-QSV-511	FSE		60-005-511	Ē	than MTTR can
		60-PT-510	Initiator		00-003-311		be applied after
		60-XIB-510	Input		60-45-511	>	"Out Of
		IC-60-PT-510	Input		00113-311	Ш	Service" (OOS)
	2	CommonLS	Logic			n 1	status
	5	OC-60-PT-510	Input	00-10103-510		Ru	activation
		60-XOB-510	Output			be	
~		60-SOV-510	Output			Ē	
-		60-ESV-510	FSE				
		60-PT-521	Initiator			25	
		60-XIB-521	Input			Ő	
	2	60-STA-521	Logic	60 MOS 521		n 2	
	5	60-XOB-521	Output	00-10103-321		Ru	Longer time
		60-SOV-521	Output			be	MAINTENANCE
	-	60-QSV-521	FSE		60.005.521	Pi	than MTTR can
		60-PT-520	Initiator		00-003-521		be applied after
		60-XIB-520	Input		60-HS-521	2	"Out Of
	5	IC-60-PT-520	Input		00-113-321	ES	Service" (OOS)
1	4	CommonLS	Logic	60-MOS-520		n 2	status
	т	OC-60-PT-520	Input	00-10103-320		Ru	activation
		60-XOB-520	Output			be	
		60-SOV-520	Output			Pi	
		60-ESV-520	FSE				

Table 5 – 60-SIF-500 description of basic facilities for MAINTENANCE

FS

 FS
 Functional Safety
 LIUTAIO - Consulting and Engineering Services

 SIL1
 Maximum PFDavg
 Doc No. 0418E30SD07 - Rev.02
 www.LiutaioCES.com
 Page 21 of 23

 SIL1
 CONCEPTUAL SRS - LETDOWN STATION - SAMPLE DOCUMENT

FS	#	Device's Tag	Туре	MOS Tag (2)(3)	OSS Tag (1)(5) Reset button Tag		Remarks	
		60-PT-531	Initiator			N N		
		60-XIB-531	Input			QS QS		
	- 4	60-STA-531	Logic	CO NAOS 534	10	n 3		<i>V</i>
SIL 1	5	60-XOB-531	Output	60-IVIOS-531	6	Rui	Longer time	
511.7		60-SOV-531	Output		CD 000 534	ЭС	MAINTENANCE	
511 3	1	60-QSV-531	FSE		60-005-531	Pip	than MTTR can	
SHA	203	60-PT-530	Initiator		60-HS-531		be applied after	
6	X.	60-XIB-530	Input		00110001	>	"Out Of	
	6	IC-60-PT-530	Input			ES	Service" (OOS)	
		CommonLS	Logic	60-MOS-530	0	Pipe Run 3	status	
	0	OC-60-PT-530	Input				activation	
		60-XOB-530	Output					
		60-SOV-530	Output		0			
		60-ESV-530	FSE					
		60-PT-541	Initiator			S		
		60-XIB-541	Input			n 4 Q	2 1	
	7	60-STA-541	Logic	60-MOS-541				
	1	60-XOB-541	Output	00 11103 541		Ru	Longer time	
		60-SOV-541	Output		60-005-541	be	MAINTENANCE	
		60-QSV-541	FSE		00-003-341	Pi	than MTTR can	
	193	60-PT-540	Initiator		60-HS-541		be applied after	
	1	60-XIB-540	Input		00110511	S	"Out Of	
		IC-60-PT-540	Input			- 1	Service" (OOS)	
8	CommonLS	Logic	60-MOS-540		ur 🖉	status		
0		OC-60-PT-540	Input		α	R	activation	
		60-XOB-540	Output			ipe		
		60-SOV-540	Output			Ā		
	1	60-ESV-540	FSE					

Note 1: OOS tag shall be "Activated" to avoid MOS shutdown after MTTR.

- Note 2: Only one(1) MOS can be "Activated" at the time, or none if other MOS are already activated in the same "MOS Group".
- **Note 3:** Above "Note 2" DOES NOT apply for MOS AUTOMATIC activation. Refer to section 4.2.15, in document (reference [3]) 0418D20SD04 Safeguarding requirements for further MOS information.
- **Note 4:** Proper working permits' management and implementation of Lock-out of hand valves **MUST APPLY** to keep these hand valves in the required position during normal operation, to allow 60-SIF-500 to execute action on demand.

MANINTENANCE can be applied to one pipe run while the CPP is in normal operation, **BUT** ONLY when the other three(3) are in normal operation as well.

MAINTENANCE can be applied to all instruments and physical pipe run between the isolation valves.

Before applying MAINTENANCE to a pipe run, ALL related SAFETY and PERMISSION procedures **MUST BE** completed and approved. Next, the related pipe run can be set OOS (see Table 5)

5.18 Adjustments and Modifications according to operation modes and/or the project phases

N/A

Safety Function 60-SIF-500

Simplified Diagram

LEGEND: → Process Gas line. → Pneumatic line. → Instrument connection. - → Safety instrument signal. → Control instrument signal.

ABBREVIATIONS:

- LC Lock Close
- LO Lock Open
- PRV Pressure Relief Valve
- STA Safe Trip Alarm module

