Doc No. 0418E30SD10 - Rev.02
 www.LiutaioCES.com
 Page 1 of 35

 SIL VERIFICATION (D) - LETDOWN STATION - SAMPLE DOCUMENT

The purpose of this SAMPLE document is to show in the public domain a typical SIL verification assessment & report (Detailed Report)

Functional Safety

For a "Letdown Station", developed by:

LIUTAIO

"FUNCTIONAL SAFETY SERVICES"

For preparing this SAMPLE report, examples of industrial processes and typical process data was used in combination with

LIUTAIO experience.

However, when this report is prepared for a CUSTOMER, only the authorized or provided information by CUSTOMER will be used, and the report **WILL NOT BE** part of the public domain.

SIL Verification assessment SUMMARY

		avg (Low De	mand System)		7
	SIF's Tag number	60-SIF-	·500	SIL Verification Report No.	0418E30	SD08
	SIF's Description	Gas Process	ing Plant	inlet facilities protection against an	overpressure	operation
SI		scenario				
SI	Process Safety Time (PST) 30	0 sec	SIF Response Time (SRT, MART)		15 sec
SI	Target SIL rating	SIL	3	Maximum SIL Safety Design Lim	nit (MSSDL)	70%
51	Verified SIL rating	SIL	1	SIF's Service Life period (SLf)		10 years

The purpose of this SIL verification report was to execute a preliminary assessment of the 60-SIF-500 design, considering Simple/Enhanced design/installation, Maintenance times (MTR, TD, MRT), and the SIF Devices fault detection capabilities (Diagnostics) that were used in the design.

The "SIL verification" assessment RESULTS were:

- 60-SIF-500 design in document (reference [5]) "0418E30SD09 Conceptual SRS Letdown Station" is capable to satisfy "SIL 1" rating, instead of target "SIL 3" rating. "Proof Test" 6 months. See Table 1.
- 2) The main reason to DO NOT reach the target SIL rating is the "SIL a" qualification of ALL safety valves (QSV and ESV) by "Safe Failure Fraction" (SFF). This fact allows 60-SIF-500 to claim ONLY up to "SIL 1" rating. Refer to Table 1.

	- 105 W	SIL verifi	cation" RES	ULTs	
0	N	(Low De	emand System	l)	0
Total	Total	Total	Effe	ctive SIL rating	by
PFDavg	RRF	% WC	IEC-61508	MSSDL	Route 1H
6.59E-04	1517	100.0%	SIL 3 (4)	SIL 3 (5)	SIL 1 (3)

Verified SIF's SIL rating : SIL 1 Note 2


3) The following action is required to make 60-SIF-500 to satisfy target "SIL 3" rating:

a) Change ALL safety valves (QSV and ESV) for valves capable to claim for up to "SIL 2" rating, according to SFF.

After verifying above indicated action:

- 4) 60-SIF-500 satisfies the target "SIL 3" rating (see Table 2), and
- 5) "Proof Test" shall be executed every 7 months for ALL 60-SIF-500 devices.

		6	SIL verifi	cation" RES	ULTs		
			Low D	emand System			10 1 1
	Total	Total	Total	Effe	ctive SIL rating	g byunctio	nal Safety
	PFDavg	RRF	% WC	IEC-61508	MSSDL	Route 1H	
	6.93E-04	1444	100.0%	SIL 3 (4)	SIL 3 (5)	SIL 3 (3)	num PFDavg
	N	Verif	ied SIF's S	SIL rating :	SIL 3	Note 2	
N	otes				SIL 2		h
2	Minimum Verified SIF'	s SIL rating a	mong calcula	ted values from	IEC-615 <mark>08, MS</mark> S	DL and Route 1	Н.
3	Minimum SIL rating a	nong the abo	ove listed max	kimum SIL rating	s to CLAIM by "	Route 1H".	
4	Verified SIF's SIL ratin	g according	to IEC-61508.		SIL 4	250	
5	"PFDavg" design limit	for SIL targe	t @ 70% MS	SDL is : 7.30E-04	[1 / v]		

	1,	Docu	ment p	ourpose	4
5	2.	Abbr	eviatio	ns	4
5	3.	Gloss	sary		
	4.				/ % // ·
	5.	SIL ve		ion assessment	
		5.1	SIF D	escription	5
		5.2		y integrity targets, constraints and other requirements	
			5.2.1	Safety integrity targets	6
				SIL verification Constraints, default values and other requirements	
				Other requirements	
		5.3	Prem	ises and Assumptions	
		5.4	Relia	bility data validation (RDV)	9
			5.4.1	Use of fault detection capabilities in the 60-SIF-500 design	
			5.4.2	"Initiators", "Input isolators", "Safety Trip Alarm" (STA) and Output isolators to QSVs	•
	1		r	"Initiators", Input isolators, "Input cards" and "CommonLS" to trip ESVs	
		F		Output isolators to trip ESVs	
				High priority trip 60-SIF-510	
		5.5	Relia	bility Block Diagram (RBD)	
		5.6	Asses	ssment results	
		5.7	(FME	A) Failure Modes and Effects Analysis	
		2	5.7.1	List of considered combined individual devices in failure for "SIL verification" assessment	24
		5.8	Failu	re modes that DO NOT promote a "Failure on Demand"	
	4	5.9	SIF D	evices' List and data for "SIL verification" (after Reliability Data Validation)	
	APF	PENDI	(A – 60	D-SIF-500 Reliability Block Diagram (RBD) to calculate "PFDavg"	
	APF	PENDI	(B - 60	-SIF-500 Reliability Block Diagram (RBD) to calculate "STRavg"	

FS

 Doc No. 0418E30SD10 - Rev.02
 www.LiutaioCES.com
 Page 4 of 35

 SIL VERIFICATION (D) - LETDOWN STATION - SAMPLE DOCUMENT

1. Document purpose

The purpose of this sample document is to show in the public domain a typical "<u>SIL verification</u> assessment and report", developed by LIUTAIO "Functional Safety Services"

For preparing this SAMPLE report:

- a) Examples of industrial processes and typical process data was used in combination with **LIUTAIO** experience.
- b) "Safety Requirements Specification" (SRS) was developed according to reference [4], 0418D20SD04 Safeguarding requirements Sample Document, Rev.01.

However, **LIUTAIO** is a professional and serious company and when this report is prepared for a CUSTOMER, only the authorized or provided information by CUSTOMER will be used, and the report **WILL NOT BE** part of the public domain.

2. Abbreviations

Refer to sample document: 0418D10SD01 Abbreviations

This document additional abbreviations are:

- GPP Gas Processing Plant
- LDS Letdown Station
- FCR Field Control Room
- LCR Local Control Room

3. Glossary

Refer to sample document: 0418D10SD02 Glossary

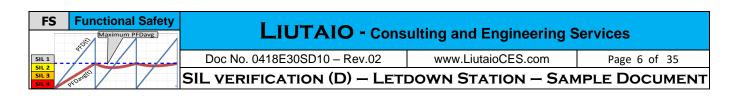
FS	
	Maximum PFDavg
SIL 1	
SIL 2	
SIL 4	2f0.

 Doc No. 0418E30SD10 - Rev.02
 www.LiutaioCES.com
 Page 5 of 35

 SIL VERIFICATION (D) - LETDOWN STATION - SAMPLE DOCUMENT

FS | Functional Safety

4. References


- [1] **LIUTAIO** Functional Safety Services 0418D10SD01 Abbreviations - Sample Document Rev.01
 - [2] **LIUTAIO** Functional Safety Services <u>0418D10SD02</u> Glossary - Sample Document Rev.01
 - [3] LIUTAIO Functional Safety Services 0418D18SD03 SIF General Design Background - Sample Document Rev.01
 - [4] LIUTAIO Functional Safety Services 0418D20SD04 Safeguarding requirements - Sample Document Rev.01
 - [5] LIUTAIO Functional Safety Services <u>0418E30SD09</u> Conceptual SRS – Letdown Station - Sample Document Rev.02
 - [6] Stein Hauge, Solfrid Håbrekke and Mary Ann Lundteigen Reliability Prediction Method for Safety Instrumented Systems – PDS Example collection, 2010 Edition SINTEF Technology and Society, Safety Research, 2010-12-14

5. SIL verification assessment

5.1 SIF Description

Refer to sections 5.1, 5.2 & 5.3, document (reference [5]) 0418E30SD09 Conceptual SRS – Letdown Station

FS	
	Maximum PFDavg
SIL 1	
SIL 2	
SIL 3	
SIL 4	Sec.

Safety integrity targets, constraints and other requirements

5.2.1 Safety integrity targets

SIL	Table 1– 60-SIF-500 Safety i	ntegrity to	argets	(Low Demand	System)
SI	SIF's Tag number	6	0-SIF-500	SIL Verification Report No.	0418E30SD10
51	SIF's Description	Gas Pr	ocessing Plant i	nlet facilities protection against a	in overpressure operation
		scenari	io		
	Process Safety Time	(PST)	30 sec	SIF Response Time (SRT, MA	RT) 15 sec
	Target SIL rating		SIL 3	Maximum SIL Safety Design	Limit (MSSDL) 70%

For "Initiators" and Trip settings, refer to Table 11.

5.2.2 SIL verification Constraints, default values and other requirements

Table 2 shows typical constraints and default values for "SIL verification".

Table 2 - 60-SIF-500 SIL verification	Constraints and default values
---------------------------------------	--------------------------------

No.	Description	Abbreviation	Default value	Constraint value	Remark
1			12 months	\geq 4 months	
2	Proof Test Period	TI,	12 months	≥ 6 months	For All QSV and ESV valves
S	Service Life	SLf	10 years		
4	Mean Time To Restoration	MTTR	72 hours	≥ 72 hours	
5	Proof Test Duration	TD	4 hours	≥ 4 hours	
6	Mean Repair Time	MRT	24 hours	≥ 24 hours	

Other constraints shall include:

- 1) Regarding to calculation of Beta values for "Common Cause Failure" (CCF) effect:
 - a) For any "Decision Logic" or "Safety Channel Architecture" (SCA) equal to "XooN(D)" (N>X and N>1), the CCF effect MUST BE calculated. ZERO(0.0) values ARE NOT accepted for CCF effect and respective Beta (β) values.

CCF effect is ZERO(0.0) ONLY for "NooN" logic.

- b) Default methodology to calculate Beta values for "Common Cause Failure" (CCF) effect shall be IEC-61508-6, Annex D.
- c) To estimate the CCF effect the "<u>Geometric Average</u>" is the default method to estimate the combined failure rates from devices.

In a group of devices to consider for CCF effect calculation, when one (or some) of them has (have) failure rate (λ DD, or LdDD) value(s) equal to ZERO(0.0) and other devices **DO NOT**, then the "<u>Maximum</u>" values of the Failure rates will be used instead, in order to properly consider those devices effect on the verified SIL rating.

d) When devices with different "<u>Proof Test Periods</u>" (TI) are involved in the same "<u>Proof Test</u>", the CCF effect calculation **MUST BE** done to force the CCF's TI to meet each device's TI value.

FS Functional Safety

 Doc No. 0418E30SD10 - Rev.02
 www.LiutaioCES.com
 Page 7 of 35

 SIL VERIFICATION (D) - LETDOWN STATION - SAMPLE DOCUMENT

FS Functional Safety

5.2.3 Other requirements

Other requirements for this SIL verification assessment are described in the following list:

SIL 1 SIL 2 SIL 3

1) "<u>SIL verification</u>" calculations **MUST** consider individual failures of all devices, as well as all possible combined failures, that will make 60-SIF-500 to fail on demand.

- 2) By default, "<u>SIL verification</u>" shall consider "Fault Detection Capabilities" (Diagnostics) for "<u>Common Logic Solver</u>" (CommonLS) and Input/Output cards.
- 3) If target SIL rating is no satisfied, propose possible actions/solutions to improve the design of 60-SIF-500.
- 4) Using IEC-61508-6, Annex D, it is possible to calculate the following "Beta" value cases:
 - <u>SIF simple</u> Design/Installation quality is representative of high Beta values (or Worst values).
 - <u>SIF enhanced</u> Design/Installation quality is representative of low Beta values (or best values).

And, "SIL verification" shall be developed by calculating and reporting "Beta" values (β, β_D) corresponding to <u>BOTH</u> the **Simple** (Greater CCF effect) and the **Enhanced** (Lower CCF effect) SIF's Design/Installation cases.

- 5) Verify SIL rating in the cases of SIF's **simple** and **enhanced** implementation quality, but with NO Maintenance effect (MTTR, TD, MRT all equal to 0.0 hours).
- 6) Verify SIL rating in the same condition as described in above point No.5), but including Maintenance effect (MTTR, TD, MRT).
- 7) For above point No.6), calculate the SIF's "STRavg" (and "MTTRspurious") in the following cases:
 - a) When during normal operation, a "Spurious Trip" occurs in one(1) pipe run.
 - b) When during normal operation, a "Spurious Trip" occurs in two(2) pipe runs (NOT necessarily at the same time).
- 8) Recalculate "PFDavg", "STRavg" and "MTTFspurious" for one of the proposed point No.2 actions/solutions.
- 9) Since the "Letdown Station" (LDS) can operate with one pipe run "<u>Out of Service</u>" (OOS, for MAINTENANCE purposes), verify that still 60-SIF-500 satisfy the target SIL rating with three(3) pipe runs in operation in 2003 configuration.

NOTE: in this case, use the same beta values that were used for 3004 configuration.

10) Repeat calculation above in point No.7) for point No.9), to determine SIF's "STRavg" (and "MTTRspurious") for 3 pipe runs in operation in 2003 configuration.

NOTE: in this case, use the same beta values that were used for 3004 configuration.

5.3 Premises and Assumptions

- Refer to below section 5.9 for SIF Devices' List and data for "<u>SIL verification</u>" (after Reliability Data Validation).
- SIL 1 2) SIL 2 SIL 3 SIL 4
- 2) Input cards SHALL NOT work in 1001D architecture. When a "Detected Failure" occurs in the input card, DCS (Console Operator) shall be notified and automatic MOS applies. BUT, any way related ESV shall trip after MTTR time if failure IS NOT repaired/fixed.
 - 3) The "<u>Common Logic Solver</u>" (CommonLS) shall work in 1001D architecture, so when a "Detected Failure" (Safe or Dangerous) occurs in the "CommomLS", the SIF implementation shall initiate "Spurious Trips" of all QSV and ESV valves to **DO NOT** compromise safety. Refer to reference [5, SRS], section 5.16.3.
 - 4) Since the "<u>Common Logic Solver</u>" (CommonLS) is connected to trip all ESVs, ONLY a "<u>Dangerous UnDetected</u>" failure is enough in "CommonLS" to make both 60-SIF-500 and 60-SIF-510 to fail on demand.
 - 5) Output cards shall work in 1001D architecture, so when a "Detected Failure" (Safe or Dangerous) occurs in the Output Card, the SIF implementation shall initiate "Spurious Trip" of the related ESV valve to **DO NOT** compromise safety in the related pipe run. Refer to reference [5, SRS], section 5.16.3.
 - 6) The "PFDavg" calculation methodology considers failures in any independent device in the safety channel that will trip a QSV or ESV valve.

The "CommonLS" is also present in the four(4) safety channels that will trip QSV valves. Refer to High Priority Trip 60-SIF-510 in section 5.3 & 5.9, document (reference [5]) 0418E30SD09 Conceptual SRS – Letdown Station.

BUT, a "CommonLS" "<u>Dangerous UnDetected</u>" failure **WILL NOT** make STAs to fail on demand to trip QSV valves. For all other failure types, "CommonLS" will initiate a "Spurious Trip".

It **DOES NOT** have sense to include the "CommonLS" as an independent device on each of the indicated four(4) channels to Trip EDV valves, because "CommonLS" is just one device, **NOT** four(4).

To take into account that a "<u>Dangerous Undetected</u>" failure in the "CommonLS" shall affect four(4) safety channels to trip ESV valves, this logic solver is included in the RBD for SIF's "PFDavg" calculation as a 4004 architecture to consider its high contribution to "PFDavg".

- 7) Regarding the following input channel devices:
 - Pressure transmitters 60-PT-510/520/530/540 and 60-PT-511/521/531/541,

The following requirement and fact apply:

- a) Each device shall be configured to set its output in SAFE state when a "Detected Failure" happens (NAMUR NE 43), and
- b) Any of those devices IS NOT physically capable to perform a 1001D architecture.

However, the "<u>Safety Trip Alarm</u>" 60-STA-511/521/531/541 is capable to avoid spurious trips from input channel device in "Detected Failure" condition (via NAMIUR NE 43).

8) About calculation of SIF's "PFDavg":

FS

- a) 4004 architecture will be used from above point No.6 to calculate "CommonLS" contribution to "PDFavg".
- b) 2002 architecture will be used to calculate all pairs QSV-ESV valves contribution to "PDFavg" to consider that both valves shall close for successful gas flow cut-off through a pipe run.
- c) Each "Output Card" that handles the High Priority Trip 60-SIF-510 of the related QSV valve, **DOES NOT** contribute to the SIF's "PFDavg", because a "Dangerous Failure" in this card **DOES NOT** make 60-SIF-500 to fail on demand to trip QSV valves.
- 9) About calculation of SIF's "STRavg":
 - a) The 4oo4 architecture from above point No.6 has a very low "STRavg", typical for an architecture where four(4) devices shall have a "Spurious Tip" to trip all ESVs. This **IS NOT** the case for "CommonLS" since it is only one(1) device.
 - b) Even though both safety valves per pipe run shall close (2002) to considered that high-pressure gas flow through the pipe run was cut-off successfully, a "Spurious Trip" occurs if only one(1) safety valve closes (1002).
 - c) The High Priority Trip 60-SIF-510 can trip ALL safety valves in the LDS through "CommonLS". So, a CommonLS "Safe Failure" can initiate a "Spurious Trip" of ALL LDS safety valves.
 - d) "Output Card" to handle the High Priority Trip 60-SIF-510 of the related QSV valve, contributes to the SIF's "STRavg", but **NO** effect for "PFDavg".

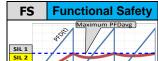
From the above "a" to "c" statements, the following apply for SIF's "STRavg" calculation:

- The "CommonLS" shall be considered as a 1008 architecture, to take into account the fact that only one device "<u>Safe Failurre</u>" will initiate a "Spurious Tip" on eight(8) safety valves (QSVs and ESVs).
- The two(2) series of devices that trip the QSV and ESV valves, respectively, shall be considered as a 1002 architecture (instead of 2002 as for "PFDavg"), because a "Spurious Trip" happens if only one(1) valve closes.

Refer to "<u>APPENDIX B</u>" for adjusted RBD for "STRavg" calculation.

5.4 Reliability data validation (RDV)

Refer to:


- a) Below section 5.9 for the 60-SIF-500 Devices' data for "<u>SIL verification</u>" (after Reliability Data Validation).
- b) 60-SIF-500 GPP high-pressure protection, SIF detailed diagram in "<u>APPENDIX B</u>" in document (reference [5]) 0418E30SD09 Conceptual SRS Letdown Station.

FS

c) 60-SIF-500 Reliability Block Diagram in "APPENDIX A".

This section is organized in the following sub-sections:

- 1) Use of fault detection capabilities in the 60-SIF-500 design
- 2) "Initiators", "Input isolators", "Safety Trip Alarm" (STA) and Output isolators to trip QSVs.
- 3) "Initiators", Input isolators, "Input cards" and "CommonLS" to trip ESVs.
- 4) Output isolators to trip ESVs.
- 5) High priority trip 60-SIF-510.

 Doc No. 0418E30SD10 - Rev.02
 www.LiutaioCES.com
 Page 10 of 35

 SIL VERIFICATION (D) - LETDOWN STATION - SAMPLE DOCUMENT

5.4.1 Use of fault detection capabilities in the 60-SIF-500 design

After reviewing the 60-SIF-500 SRS (reference [5]), it is confirmed that this SIF design uses fault detection capabilities of ALL SIF devices, except for the safety valves (QSV and ESV) and solenoid valves.

This fact is indicated in in below section 5.9, Table 12, column "B".

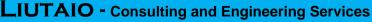
5.4.2 "Initiators", "Input isolators", "Safety Trip Alarm" (STA) and Output isolators to trip QSVs

From SRS (reference [5]), it is indicated in Table 12 that the devices:

- Pressure transmitters (PTs) 60-PT-511/521/531/541,
- Input isolators 60-XIB-511/521/531/541,

have fault detection capabilities (Diagnostics), and use NAMUR NE43 to indicate to all other downstream SIF devices when "Detected Failures" occurs in the referred device.

As indicated in 60-SIF-500 design, section 5.6 & 5.11 in document (reference [5]) 0418E30SD09 Conceptual SRS – Letdown Station, these devices **WILL NOT** initiate a SIF demand when a "<u>Detected Failure</u>" occurs.


In addition, the "<u>Safety Trip Alarms</u>" (STA) 60-STA-511/521/531/541 modules also include input failure detection (NAMUR NE 43) and "Dangerous Detected" failures detection. So, when a "Detected Failure" occurs in an "Initiator" or input isolator, the STA module can differentiate a trip from failure condition in order to avoid QSV valves spurious trips.

Data Validation statement:

"<u>SIL verification</u>" confirms it is acceptable the design decisions to avoid QSV valve "Spurious Trip" when the related "Initiator", "Input Isolator" and STA module is detected in failure. Refer to section 5.16.1 in document (reference [5]) 0418E30SD09 Conceptual SRS – Letdown Station.

This design decision:

- a) Is indicated in in below section 5.9, Table 12, column "T".
- b) Will allow 60-SIF-500 to identify a "<u>Dangerous Detected</u>" in any of the above listed devices, and to keep GPP protected in this case.
- c) On PTs, input isolators and STA modules, "Detected Failures" **HAS NO** effect on "PFDavg (SIL rating) and "STRavg" (Spurious trips). So, design decision:
 - Avoids "Spurious Trips" from SD and DD failures (from Initiators, Input isolators and STAs).
 - Increases "PFDavg", equivalent to decrease SIL rating, and
 - Decreases 60-SIF-500 "STRavg", equivalent to increase the "MTTFspuriusly".

 Doc No. 0418E30SD10 – Rev.02
 www.LiutaioCES.com
 Page 11 of 35

 SIL verification (D) – Letdown Station – Sample Document

5.4.3 "Initiators", Input isolators, "Input cards" and "CommonLS" to trip ESVs

From SRS (reference [5]), it is indicated in Table 12 that the devices:

- Pressure transmitters (PTs) 60-PT-510/520/530/540, and
- Input isolators 60-XIB-510/520/530/540,

have fault detection capabilities (Diagnostics), and use NAMUR NE 43 to indicate to all other downstream SIF devices when "Detected Failures" occurs in the referred device.

As indicated in 60-SIF-500 design, section 5.6 & 5.11 in document (reference [5]) 0418E30SD09 Conceptual SRS – Letdown Station, these devices **WILL NOT** initiate a SIF demand when a "<u>Detected Failure</u>" occurs.

NAMUR NE 43 will allow "Input card" detect "Detected Failure" in input channel, and logic in "CommonLS" **WILL NOT** trip the related safety valves

Data Validation statement:

"<u>SIL verification</u>" confirms it is acceptable the design decisions to avoid ESV valve "Spurious Trip" when the related "Initiator", "Input Isolator" and "Input Card" module is detected in failure. Refer to section 5.16.2 in document (reference [5]) 0418E30SD09 Conceptual SRS – Letdown Station.

This design decision:

FS

Functional Safety

- a) Is indicated in in below section 5.9, Table 12, column "T".
- b) Will allow 60-SIF-500 to identify a "<u>Dangerous Detected</u>" in any of the above listed devices, and to keep GPP protected in this case.
- d) On PTs and input isolators, "Detected Failures" **HAS NO** effect on "PFDavg (SIL rating) and "STRavg" (Spurious trips). So, design decision:
 - Avoids "Spurious Trips" from SD and DD failures (from Initiators, Input isolators and input cards).
 - Increases "PFDavg", equivalent to decrease SIL rating, and
 - Decreases 60-SIF-500 "STRavg", equivalent to increase the "MTTFspuriusly".

5.4.4 Output isolators to trip ESVs

From SRS (reference [5]), it is indicated in below section 5.9, Table 12, column "B" that the "Output Isolators" 60-XOB-511/521/531/541 have fault detection capabilities (Diagnostics),

And, the "Output Isolator" is capable to use diagnostics to De-Energize output to trip the related QSV valve when a "<u>Detected Failure</u>" occurs in this device (see below section 5.9, Table 12, column "T").

Data Validation statement:

"<u>SIL verification</u>" confirms it is acceptable the design decisions for "Output Isolators", because there is no way to avoid "Spurious Trips" from a failure in this device, and this design decision **DOES NOT** compromise safety.

This design decision:

a) **DOES NOT** compromise safety, because in case of "Detected Failures" there **WILL NOT** be possibility to lose trip command to the ESV valves and GPP. So, GPP is always protected.

b) On "Output Isolators", "Detected Failures" (Safe & Dangerous) will always initiate a "Spurious Trip". So, design decision:

Decreases "PFDavg", equivalent to increase SIL rating,

BUT, increases 60-SIF-500 "STRavg", equivalent to decrease the "MTTFspuriusly".

5.4.5 High priority trip 60-SIF-510

From section 5.9 in document (reference [5]) 0418E30SD09 Conceptual SRS – Letdown Station, it is a design decision to allow the higher priority 60-SIF-510 to initiate a demand in the 60-SIF-500 to close (SAFE state) ALL safety values in the LDS (both ESVs and QSVs).

Data Validation statement:

"<u>SIL verification</u>" confirms it is acceptable the above described design decision to support the plant safety trip hierarchy:

- a) By transferring TRIP command from 60-SIF-510 to all ESV valves, via "CommomLS", and
- b) By including four(4) additional output cards in "CommonLS" to transfer TRIP command from 60-SIF-510 to all QSV valves.

This design decision:

- a) HAS NO effect to in the "PFDavg", and SIL rating IS NOT affected.
- b) BUT, it is in favor to increase the 60-SIF-500 "STRavg", equivalent to decrease the "MTTFspuriusly".

5.5 Reliability Block Diagram (RBD)

The Reliability Block Diagram (RBD) shows the 60-SIF-500 Devices' interactions and contributions to make this SIF to fail on demand.

Refer to:

- "APPENDIX A" for RBD to calculate "PFDavg".
- "APPENDIX B" for RBD to calculate "STRavg".

FS	
	Maximum PFDavg
SIL 1	
SIL 2	
SIL 4	540°

 Doc No. 0418E30SD10 – Rev.02
 www.LiutaioCES.com
 Page 13 of 35

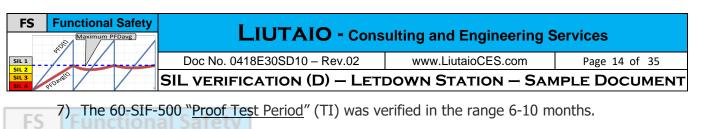
 SIL VERIFICATION (D) – LETDOWN STATION – SAMPLE DOCUMENT

5.6 Assessment res	ults		
(Maximum PFI	Low [Demand System)	~
SIF's Tag number	60-SIF-500	SIL Verification Report No.	0418E30SD10
SIF's Description	Gas Processing Plant scenario	inlet facilities protection against an	overpressure operation
Process Safety Time	(PST) 30 sec	SIF Response Time (SRT, MART) 15 sec
Target SIL rating	SIL 3	Maximum SIL Safety Design Lin	nit (MSSDL) 70%
Verified SIL rating	SIL 1	SIF's Service Life period (SLf)	10 years

NOTE: refer to below section 5.9 for "<u>SIF Devices'</u> List and data for "<u>SIL verification</u>" (after Reliability Data Validation).

The purpose of this "<u>SIL verification</u>" report was to execute a preliminary assessment of the 60-SIF-500 design, considering Simple/Enhanced design/installation, Maintenance times (MTR, TD, MRT), and the SIF Devices fault detection capabilities (Diagnostics) that were used in the design.

The "SIL verification" assessment RESULTS were:


- 60-SIF-500 design, as described in document (reference [5]) "0418E30SD09 Conceptual SRS – Letdown Station", is capable to satisfy "SIL 1" rating, instead of target "SIL 3" rating. "Proof Test" 6 months. See Table 3.
- The main reason to **DO NOT** reach the target SIL rating is the "SIL a" qualification by "<u>Safe Failure Fraction</u>" (SFF) of ALL safety valves (QSV and ESV). This fact allows 60-SIF-500 to claim ONLY up to "SIL 1" rating. Refer to Table 3 and Figure 3.
- 3) The following action is required to make 60-SIF-500 to satisfy target "SIL 3" rating:
 - a) Change ALL safety valves (QSV and ESV) for valves capable to claim for up to "SIL 2" rating according to SFF.

To verify the above indicated action, reliability data in Table 12 was used, and the results were:

- 4) "Proof Test" shall be executed every 7 months for ALL 60-SIF-500 devices.
- 5) 60-SIF-500 will be capable to claim up to "SIL 3" rating, and to perform with "PFDavg" 6.87E-04 1/y, and:
 - a) "STRavg" 1.64E-03 1/y (MTTFspuriously 6.1 years) when a "Spurious Trip" occurs in one(1) pipe run only.
 - b) "STRavg" 2.50E-03 1/y (MTTFspuriously 400.3 years) when a "Spurious Trip" occurs in two(2) pipe runs, one after the other one (not necessarily at the same time).

Refer to Table 4 for further details.

6) Figure 4 shows the PFDavg/PFD(t) graph 7 months "Proof Test Period" for ALL SIF's devices, 4 pipe runs in operation (3004).

From this verification, it was found that Maintenance effect (MTTR, TD, MRT) impact on 60-SIF-500 is negligible when SIL rating (PFDavg, STRavg) was verified. CCF has a bigger impact in 60-SIF-500 SIL rating.

Refer to:

- Table 5 for numeric results about "PFDavg" & "STRavg", and
- Figure 2 for graphic results.
- 8) Calculated "Beta" (β & βD) values for the cases of Simple (Greater CCF effect) and Enhanced (Lower CCF effect) SIF's design/Installation are as reported in Table 6. Refer to "Reliability Block Diagram" (RBD) in "<u>APPENDIX A</u>" and "<u>APPENDIX B</u>".
- 9) If it is required to increase the SIF "Proof Test" period, the project team can improve the 60-SIF-500 installation quality, which effect will be to decrease the "Common Cause Failure" (CCF) effect. For example:
 - 19% quality improvement will allow to increase "Proof Test" to every 8 months (CCF beta value reduction for 3oo4 from 17.5% to 14.43%).
 - 46% quality improvement will allow to increase "Proof Test" to every 9 months (CCF beta value reduction for 3004 from 17.5% to 10.24%).
 - 71% quality improvement will allow to increase "Proof Test" to every 10 months (CCF beta value reduction for 3004 from 17.5% to 6.36%).
 - 94% quality improvement will allow to increase "Proof Test" to every 9 months (CCF beta value reduction for 3004 from 17.5% to 2.64%).

Refer to Figure 2 for further details.

Design team shall review IEC-61508-6, Annex D, to identify measures to improve 60-SIF-500 design/installation quality.

- 10) For only three(3) pipe runs in operation, 60-SIF-500 will be capable to claim up to "SIL 3" rating, and to perform with "PFDavg" 5.98E-04 1/y, and:
 - a) "STRavg" 1.29E-01 1/y (MTTFspuriously 7.7 years) when a "Spurious Trip" occurs in one(1) pipe run only.
 - b) "STRavg" 7.15E-03 1/y (MTTFspuriously 139.8 years) when a "Spurious Trip" occurs in two(2) pipe runs, one after the other one (not necessarily at the same time).

Refer to Figure 1 for graphic details.

SIL 1		FS	
	SIL 2		Maximum PFDavg
	SIL 2	511.1	
	THE AND		

Doc No. 0418E30SD10 – Rev.02 www.LiutaioCES.com Page 15 of 35

SIL VERIFICATION (D) – LETDOWN STATION – SAMPLE DOCUMENT

FS Functional Safety

Table 3 – "<u>SIL Verification</u>" detailed results for 6 months "Proof Test"

	S	SIL Rating Results original	data, 6 mor	nths "Pro	of Test'	' (SIF Simp	le implementation)			
SI	#	Independent contributions to PFDavg (Note 1)	PFDavg [1/y] (6.b)	RRF	%WC	SIL by IEC-61508	SIL by MSSDL	SIL by Route 1H		
SI	1	Initiators	5.65E-05	17562	8.64%	SIL 4	Above SIL 2	\cap		
SI	2	Input Channles	3.33E-05	29832	5.09%	SIL 4				
	3	Safety Trip Alarm (STA) modules	1.99E-05	49867	3.04%	SIL 4	PFDavg			
21	4	Common Logic Solver (CommonLS)	8.35E-07	1188003	0.13%	SIL 4	Design Limit 7.30E-04	Note 6.a		
	5	Output Channels	6.14E-05	16166	9.38%	SIL 4				
	6	Safety valves	4.82E-04	2058	73.7 2 %	SIL 3	Below SIL 3	8		

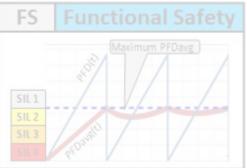
110

Total	Total	Total	Effect	Effective SIL ratin		
PFDavg	RRF	% WC	IEC-61508	MSSDL	Route 1H	
6.59E-04	1517	100.00%	SIL 3 (4)	SIL 3 (5)	SIL 1 (3)	

Verified SIF's SIL rating :

Note 2

1


		STR Ratin	g Result	ts o r igi	nal data (SIF S	imple im	pleme	ntation)	
Ī		Independent	One(1)	pipe run	"Spurious Trip"	Two(2) pipe runs "Spurious Tr			
	#	contributions to STRavg (Note 1)	STRavg [1 / γ](6.b)	%WC	MTTFSpuriously [years]	STRavg [1 / y](6.b)	% WC	MTTFSpuriously [years]	
	1	Initiators	3.29E-03	2.16%	304	1.39E-04	2.16%	7199	
	2	Input Channels	6.00E-03	3.93%	167	2.53E-04	3.93%	3951	
	3	Safety Trip Alarm (STA) modules	1.05E-02	6.89%	95	4.43E-04	6.89%	2256	
	4	Common Logic Solver (CommonLS)	4.80E-02	31.51%	21	2.03E-03	31.51%	493	
	5	Output Channels	3.66E-02	24.01%	27	1.54E-03	24.01%	647	
	6	Safety valves	0.0	0.00%	- Never -	0.0	0.00%	- Never -	
	7	60-SIF-510 Output Card to QSV	4.80E-02	31.51%	21	2.03E-03	31.51%	493	
				5			/		

Total	Total	Total	Total	Total	Total
STRavg	% WC	MTTFSpuriously	STRavg	% WC	MTTFSpuriously
1.52E-01	100.00%	6.6	6.44E-03	100.00%	155.4

Notes

		otes
	1	Refer to Reliability Block Diagram (RBD) in "APPENDIX A".
	2	Minimum Verified SIF's SIL rating among calculated values from IEC-61508, MSSDL and Route 1H.
	3	Minimum SIL rating among the above listed maximum SIL ratings to CLAIM by "Route 1H".
	4	Verified SIF's SIL rating according to IEC-60508.
	5	"PFDavg" design limit for SIL target @ 70% MSSDL is : 7.30E-04 [1 / y]
5		From RBD (APPENDIX A) there are no individual contributions to "PFDavg", only one. So:
	6	a) It is not possible indicate SIL rating by "Route 1H".
		b) Estimated values to show a reasonable contribution to "PFDavg" of SIF's devices.

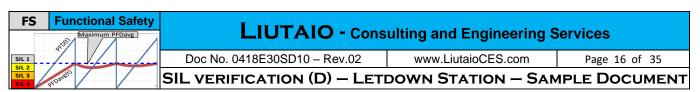


Table 4 - "SIL Verification" detailed results for 8 months "Proof Test" and SIL-2 valves, after application of actions on above point No.3

#	Independent contributions to PFDavg (Note 1)	PFDavg [1/y] (6.b)	RRF	%WC	SIL by IEC-61508	SIL by SIL by MSSDL Route 1H
1	Initiators	3.89E-05	25739	5.61%	SIL 4	Above SIL 2
2	Input Channles	2.29E-05	43722	3.30%	SIL 4	
3	Safety Trip Alarm (STA) modules	1.37E-05	73087	1.98%	SIL 4	PFDavg
4	Common Logic Solver (CommonLS)	5.74E-07	1741182	0.08%	SIL 4	Design Limit 7.30E-04
5	Output Channels	4.22E-05	23693	6.09%	SIL 4	
6	Safety valves	5.74E-04	1741	82.93%	SIL 3	Below SIL 3

Total 🖉	Total	Total	Effec	ective SIL rating by			
PFDavg	RRF	% WC	IEC-61508	MSSDL	Route 1H		
6.93E-04	1444	100.00%	SIL 3 (4)	SIL 3 (5)	SIL 3 (3)		

Verified SIF's SIL rating : SIL 3

Note 2

	STR Rating Result	One(1)	One(1) pipe run "Spurious Trip" Two(2) pipe runs					
#	contributions to STRavg (Note 1)	STRavg [1 / y](6.b)	%WC	MTTFSpuriously [years]	STRavg [1 / y](6.b)	%WC	MTTFSpuriously [years]	
1	Initiators	3.36E-03	1.98%	298	1.42E-04	1.98%	7049	
2	Input Channels	6.12E-03	3.60%	163	2.59E-04	3.60%	3868	
3	Safety Trip Alarm (STA) modules	1.07E-02	6.31%	93	4.53E-04	6.31%	2209 483	
4	Common Logic Solver (CommonLS)	4.90E-02	28.84%	20	2.07E-03	28.84%		
5	Output Channels	3.76E-02	22.12%	27	1.59E-03	22.12%	630	
6	Safety valves	1.33E-02	7.83%	75	5.62E-04	7.83%	1779	
7	60-SIF-510 Output Card to QSV	4.98E-02	29.33%	20	2.11E-03	29.33%	475	
		-						
		Total	Total	Total	Total	Total	Total	

Total STRavg	Total % WC	Total MTTFSpuriously		Total STRavg	Total % WC	Total MTTFSpuriously
1.70E-01	100.00%	5.9	1	7.18E-03	100.00%	139.3

N	otes
1	Refer to Reliability Block Diagram (RBD) in " <u>APPENDIX A</u> ".
2	Minimum Verified SIF's SIL rating among calculated values from IEC-61508, MSSDL and Route 1H.
3	Minimum SIL rating among the above listed maximum SIL ratings to CLAIM by "Route 1H".
4	Verified SIF's SIL rating according to IEC-60508.
5	"PFDavg" design limit for SIL target @ 70% MSSDL is : 7.30E-04 [1 / y]
	From RBD (<u>APPENDIX A</u>) there are no individual contributions to "PFDavg", only one. So:
6	a) It is not possible indicate SIL rating by "Route 1H".
	b) Estimated values to show a reasonable contribution to "PFDavg" of SIF's devices.

Table 5 – Calculated PFDavg/STRavg values w/SIL-2 valves, Simple/Enhance implementation, with and without Maintenance effect

	Tested	Calculated PFDavg and STRavg values [1 / y]									
	TI values			enance Effect	V	WITH Maintenance Effect (MTTR, TD, N			, TD, MRT)		
	[months]	CCF Simp	le Quality	CCF Enhance	ed Quality	CCF Simp	le Quality	CCF Enhanced Quality			
		PFDavg	STRavg (MTTFsp)		STRavg (MTTFsp)	PFDavg	STRavg (MTTFsp)	PFDavg	STRavg (MTTFsp)		
1	6	5.60E-04	0	2.29E-04		5.69E-04	(1)	2.30E-04	(1)		
2	7	6.77E-04	V	3.02E-04		6.87E-04	1.70E-01 (5.9 y)	3.03E-04	1.64E-01		
3	8	8.02E-04		3.86E-04		8.12E-04		3.87E-04	(6.1 y)		
4	9	9.35E-04		4.80E-04		9.44E-04	(2) 7.18E-03	4.81E-04	(2) 7.68E-04		
5	10	1.07E-03		5.80E-04		1.07E-03	(139.3 y)	5.80E-04	(1302.0 y)		

Note 1: One(1) pipe run "Spurious Trip". Note 2: Two(2) pipe runs "Spurious Trip".

Copyright © 2018 LIUTAIO Consulting and Engineering Services

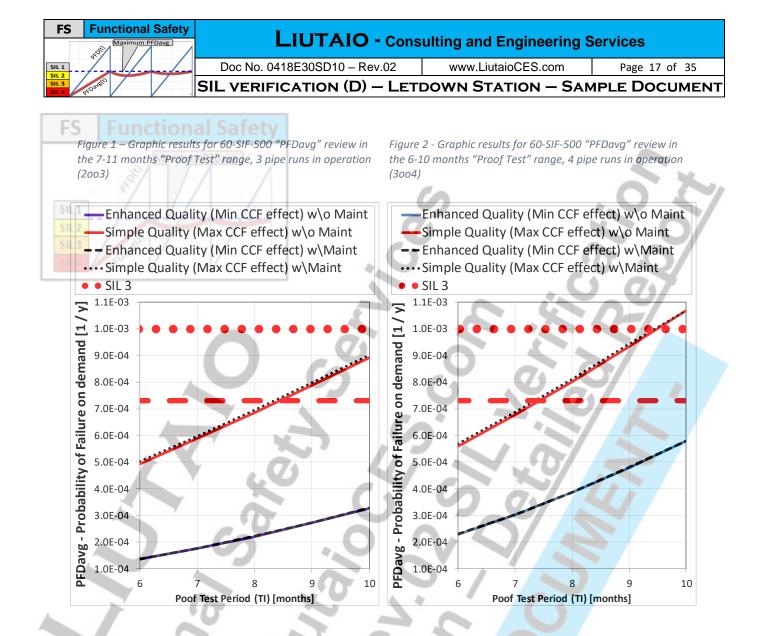


Table 6 - Calculated "Beta" values for the cases of Simple (Greater CCF effect) and Enhanced (Lower CCF effect) SIF design/installation

		Cafabri		Colculation		CCF Effect calculate Beta values					
#	#	Safety Architecture	Use description	Calculation Enhanced Design		Simple	Design				
		Architecture		use	Beta(β)	BetaD(β _D)	Beta(β)	BetaD(β _D)			
	1	3004	Whole " <u>Letdown Station</u> " (LDS) " <u>Decision Logic</u> " to trip at least 3 of 4 pipe runs	PFD (SIL) & STR	1.75 %	1.75 %	17.50 %	17.50 %			
	2	1002	"Decision Logic" to quantify the "Spurious Trip" of one(1) valve in a pipe run.	STR only	0.10 %	0.10 %	10.00 %	10.00 %			
	3	1008	"Common Logic Solver" (CommoLS) contribution to calculate "STRavg" of the whole LDS.	STR only	0.15 %	FS 0.15 %	1.50 %	Safety 1.50 %			

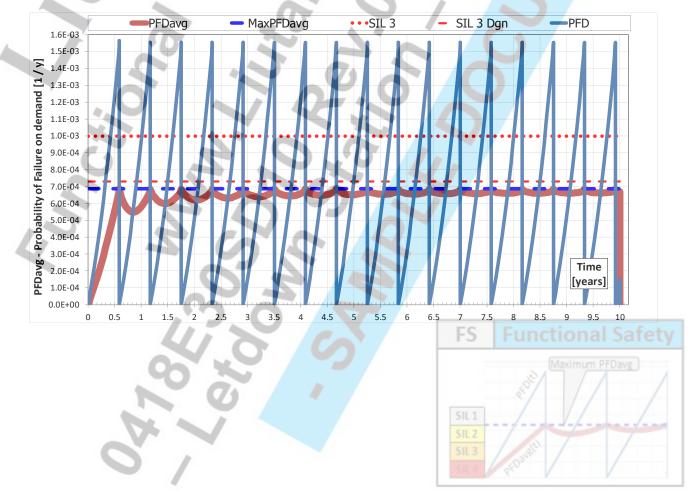
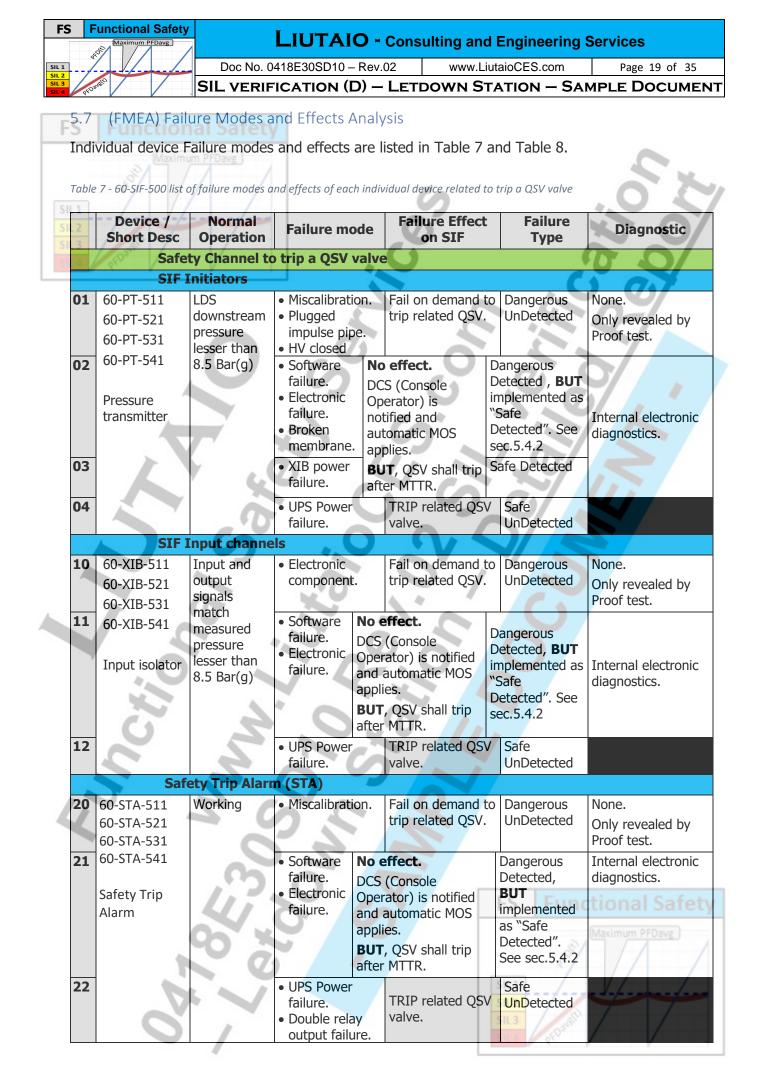
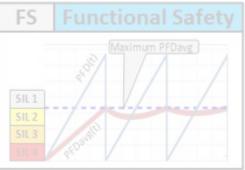




Figure 4 – 60-SIF-500 PFDavg/PFD(t) graph 7 months "Proof Test Period" for ALL SIF's devices, 4 pipe runs in operation (3004), after application of actions on above point No.3


Copyright © 2018 LIUTAIO Consulting and Engineering Services

FS F	Maximum PFDavg	LIUTAIO - Cons	ulting and Engineering S	ervices
SIL 1		Doc No. 0418E30SD10 - Rev.02	www.LiutaioCES.com	Page 20 of 35
SIL 2 SIL 3 SIL 4	Jeff	SIL VERIFICATION (D) – LETI	DOWN STATION - SAM	IPLE DOCUMENT

S	Device /NormalShort DescOperation		Failure mode	Failure Effect on SIF	Failure Type	Diagnostic
	SIF	Output Char	nels	•	-	~
30	60-XOB-511 60-XOB-521 60-XOB-531	Input and output signals match	• Electronic component.	Fail on demand to trip related QSV.	Dangerous UnDetected	None. Only revealed by Proof test.
31	60-XOB-541 Output isolator	output state from STA module.	I andre.	IP related (1001D	ous Detected, pplemented) as "Safe ed". See .4.	Internal electronic diagnostics.
32			UPS Power failure.	Safe Ur	Detected	5
33	60-SOV-511 60-SOV-521 60-SOV-531 60-SOV-541 Solenoid valve	SOV is Energized, making instrument air to keep QSV valve in the fully	SOV leaking	No Effect. BUT after some time QSV valve can open spuriously if leakage increases.	Dangerous UnDetected	None. Only revealed by maintenance or sit inspection.
34		opened position.	 SOV fails to open on demand 	Fail on demand to trip related QSV.	3	U)
35	γ	S	 SOV opens due to failure or coil burnout. 	TRIP related QSV valve.	Safe UnDetected	
	SIF	Final Safety	Elements (FSE)			
40	60-QSV-511 60-QSV-521 60-QSV-531 60-QSV-541 Quick	Fully opened	 QSV fails to close on demand QSV closes but slowly. 	Fail on demand to trip related QSV. Possible fail on demand to trip related QSV.	0	None. Only revealed by Proof test.
42	shutdown valve	nnn	QSV leaking	No Effect. BUT after some time QSV valve can open spuriously if leakage increases.	- Dangerous UnDetected	None. Only revealed by maintenance or sit inspection.

	Maximum PFDave	l		Consu	Iting a	nd E	ingineering S	ervices
1		Doc No. 04	18E30SD10 – Rev.0)2	www.	Liuta	ioCES.com	Page 21 of 35
3 PFD	Juli 1	IPLE DOCUMENT						
E C	High P	riority Trip	60-SIF-510 supp	ort to	close Q	SV		
43	OC-60SIF510-01 OC-60SIF510-02 OC-60SIF510-03	signal (NORMAL	Electronic component.	1	deman ated ES		Dangerous UnDetected	None. Only revealed by Proof test.
44 51 1 51 2 51 3 61 4 45	OC-60SIF510-04	state) and 24 VDC output signal (Energized) match.	 Electronic component. Defective input/output. Electronic 	TRIP ro QSV va DCS (Consc Operat	alve. ble tor) is	Dete BUT (100 Dete sec. No.8	gerous ected, f implemented o1D) as "Safe ected". See 5.3, points 3 & 9. e Detected	Internal electronic diagnostics.
			component.	notifie	d.			
46		2	 Electronic component. UPS Power failure. 	TRIP r ESV va	elat ed alve.	Sare	e UnDetected	7, 1

Table 8 – 60-SIF-500 list of failure modes and effects of each individual device related to trip an ESV valve

		Device / Short Desc	Normal Operation	Failure mode	Effect	Failure	Гуре	Diagnostic
				o trip an ESV va	lve			
		SIF 1	Initiators					
	01	60-PT-510 60-PT-520 60-PT-530 60-PT-540	LDS downstream pressure lesser than 8.5 Bar(g)	 Miscalibration. Plugged impulse pipe. HV closed 	Fail on demand to trip related ESV.	Dangerous UnDetected		None. Only revealed by Proof test.
	02	Pressure transmitter	WW .	 Software failure. Electronic failure. Broken membrane. XIB power failure. 	No effect. DCS (Console Operator) is notified and automatic MO applies. BUT , ESV sha trip after MTT	Safe De	d, BUT ented as d". See	Internal electronic diagnostics.
4	04		50	UPS Power	TRIP related E			
				failure.	valve.	UnDetec	cted	
			input Channe					
	10	60-XIB-510 60-XIB-520 60-XIB-530 60-XIB-540	Input and output signals match measured	Electronic component.	Fail on demand to trip related ESV.	Dangerous UnDetected	Fund	None. Only revealed by Proof test.
	11	Input isolator	pressure lesser than 8.5 Bar(g)	failure. • Electronic failure.	D effect. CS (Console perator) is tified and tomatic MOS plies.	Dangerous Detected, BL implemented "Safe Detecto sec.0	as	Internal electronic diagnostics.

Functional Safety FS avg

LIUTAIO - Consulting and Engineering Services

www.LiutaioCES.com

Doc No. 0418E30SD10 - Rev.02 Page 22 of 35 SIL VERIFICATION (D) – LETDOWN STATION – SAMPLE DOCUMENT

FS	Device / Short Desc	Normal Operation	Failure mode	Failure Effect	Failure Type	Diagnostic
	Maxim	m PFDavg		JT , ESV shall p after MTTR.		C
12	*		UPS Power failure.	TRIP related ESV valve.	Safe UnDetected	2.0
511.3	"Con	nmonLS" – C	ommon Logic S	olver		
20	IC-60-PT-510 IC-60-PT-520 IC-60-PT-530 IC-60-PT-540	Input HART signal and output soft signal match measured	• Electronic component.	Fail on demand to trip related ESV.	Dangerous UnDetected	None. Only revealed by Proof test.
21	Input cards	pressure lesser than 8.5 Bar(g)	 Electronic component. Defective input/output. 	No effect. DCS (Console Operator) is	Dangerous Detected	Internal electronic diagnostics.
22	2		• Electronic component.	notified and automatic MOS applies. BUT, ESV shall trip after MTTR.	Safe Detected, BUT implemented (1001D) as "Dangerous Detected". See section 5.4.3	3
23	5	S	 Electronic component. UPS Power failure. 	TRIP related ESV valve.	Safe UnDetected	
30	CommonLS "Common Logic Solver"	Working	• Electronic component.	Fail on demand to trip related ESV.	Dangerous UnDetected	None. Only revealed by Proof test.
31	Incri.	WW.	• Electronic component.	TRIP ALL QSV and ESV valve.	Dangerous Detected, BUT implemented (1001D) as "Safe Detected". See section 5.3, point No.3.	
32 33	5	300	 Electronic component. SIF logic DOES NOT perform on power up. 	(Console Operator) is notified.	Safe Detected	Internal electronic diagnostics.
		80 %	failure.	No Effect. UPS power sup continue powe Logic Solver	ply No Effect	tional Safet
34	2		 Electronic component. UPS Power failure. 	TRIP both ESV and ESV valves.	Safe UnDetected	1

FS Functional Safety Maximum PEDayg SIL 1 SIL 1 SIL 2 CIL 2

LIUTAIO - Consulting and Engineering Services

Doc No. 0418E30SD10 – Rev.02 www.LiutaioCES.com Page 23 of 35

SIL VERIFICATION (D) – LETDOWN STATION – SAMPLE DOCUMENT

S	Device / Short Desc	Normal Operation	Failure mode	Failure Effect	Fai	lure Type	Diagnostic
40	OC-60-PT-510 OC-60-PT-520 OC-60-PT-530	Input soft signal (NORMAL	Electronic component.	Fail on dem trip related		Dangerous UnDetected	None. Only revealed by Proof test.
41	OC-60-PT-540	state) and 24 VDC output signal (Energized)	Defective E	RIP related SV valve.	Danger Detecte BUT in		Internal electronic diagnostics.
.4	Output cards	match.		CS Console Operator) is	(1001D Detecte point N) as "Safe ed". sec.5.3, lo.4	
42				otified.	Safe De	etected.	
43		0	 Electronic component. UPS Power failur 	e. TRIP re		Safe UnDetected	5
	SIF	Output Char	nels				
50	60-XOB-511 60-XOB-521 60-XOB-531	Input and output signals match	Electronic component.	Fail on dem trip related		Dangerous UnDetected	None. Only revealed by Proof test.
51	60-XOB-541 Output	output state from STA module.	 Software failure. Electronic failure 	IP related	implem	ed, BUT lented as	Internal electronic diagnostics.
	isolator	6	tailure.	V valve.	"Safe L sec.5.4	Detected". See	
52			UPS Power failure.	0	Safe Ui	Detected	
53	60-SOV-510 60-SOV-520 60-SOV-530 60-SOV-540	SOV is Energized, making instrument air to keep	BU	Effect. T after some V valve can o uriously if lea	open	Dangerous	None. Only revealed by
54	Solenoid valve	ESV valve in the fully opened	inc	reases.	5	UnDetected	maintenance or sit inspection.
54	20	position.		il on demand ated ESV.			
55	5	5	 SOV opens due to failure or coil burnout. 	TRIP related valve.	d ESV	Safe UnDetected	
	Fina	al Safety Eler	nent (FSE)		7	•	
60	60-ESV-510 60-ESV-520 60-ESV-530	Fully opened		ail on deman ip related ES			None. Only revealed by Proof test.
61	60-ESV-540	4	• ESV closes P but slowly. d	ossible fail of emand to tri elated ESV.		S Fund Dangerous	tional Safet
62	Emergency shutdown	\$ ×	ESV leaking	lo Effect.		UnDetected	None.
	valve		E	UT after som SV valve can puriously if le	open s	11	Only revealed by maintenance or site inspection.

 Doc No. 0418E30SD10 - Rev.02
 www.LiutaioCES.com
 Page 24 of 35

 SIL VERIFICATION (D) - LETDOWN STATION - SAMPLE DOCUMENT

.7.1 List of considered combined individual devices in failure for "SIL verification" assessment

Refer to "<u>Reliability Block Diagram</u>" (RBD) in "APPENDIX A".

The 60-SIF-500 structure contains four(4) pipe runs, and each pipe run contains two(2) safety channels with SIF devices in series. The safety channels per pipe run are indicated in the RBD as "Channel xQ" and "Channel xE", where:

• "x" is the pipe run number,

FS

- "Q" is the channel that trips a QSV valve, and
- "E" is the channel that trips an ESV valve.

In addition, the "CommonLS" is commanding four(4) channels that trips each ESV valve (see above section 5.3).

The following facts rule the "<u>failure on demand</u>" condition for each "Letdown Station" (LDS) safety valve, and for the whole 60-SIF-500:

- a) Failure of one(1) or more devices in the same series makes the whole series to fail on demand. In other words, a QSV or an ESV will <u>fail to close on demand</u>.
- b) One(1) series that <u>fails on demand</u> in the same pipe run will make the pipe run safety to fail on demand (both QSV and ESV shall close, see section 5.3, document (reference [5]) 0418E30SD09 Conceptual SRS – Letdown Station).
- c) ALL pipe runs work in 3004 architecture, so two(2) or more pipe runs that <u>fail on demand</u> will make 60-SIF-500 to <u>fail on demand</u> as well.

Based on the above statements, Table 9 shows the Minimum Combined Channels in Failure cases that WILL make 60-SIF-500 to fail on demand.

This means, any other operation condition with several channels in failure that include any of the listed cases in Table 9 WILL make 60-SIF-500 to fail on demand.

All combination of channels in failure as described in above paragraph were considered in the "<u>SIL verification</u>" assessment for 60-SIF-500.

		Α	В	C	D	E	F	G	Н	Ι
1.10		<u> </u>		S	afety Channe	els description	n			
	i	Pipe I	Run 1	Pipe F	Run 2	Pipe I	Run 3	Pipe I	Run 4	
	No	Channel 1Q	Channel 1E	Channel 2Q	Channel 2E	Channel 3Q	Channel 3E	Channel 4Q	Channel 4E	
	se	to trip	to trip 👔	to trip	to trip	to trip	to trip	to trip	to trip	CommonLS
	Ca	60-QSV-511	60-ESV-510	60-QSV-521	60-ESV-520	60-QSV-531	60-ESV-530	60-QSV-541	60-ESV-540	
S	01	Failure	0	Failure						ses,
e cases the	02	Failure			Failure		E.C.		1 10	nd ca
	03	Failure				Failure	F2	Funct	lonal S	Commo these ca demand
Failure red in t	04	Failure					Failure	I.	Aaximum PFDa	if "C on d
nel side	05	Failure						Failure		
Channel Fail e considered	06	Failure		\mathcal{O}				8	Failure	
	07		Failure	Failure			SIL 1	/	1-/	NOT m lure or IF-500
nbine that a	08		Failure		Failure		SIL 2		7	ES NO failure)-SIF-5
Combined that ar	09		Failure			Failure	SIL 3	(Daver	//	e i o
0	10		Failure				Failure		V	It [is

Table 9 – Minimum Combined Channels in Failure cases that WILL make 60-SIF-500 to fail on demand

FS	Functional Safety	LIUTAIC	LIUTAIO - Consulting and Engineering Services								
SIL 1	/	Doc No. 0418E30SD10 – R	Doc No. 0418E30SD10 – Rev.02 www.LiutaioCES.com Page 25 of 3								
SIL 2 SIL 3 SIL 4	PHDaugill	SIL VERIFICATION (D)	- LETDOW	/Ν STATIO	N – SAN	IPLE DOC	UMENT				
FC	11	Failure			Failure						

11		Failure	-				Failure		
12	unctio	Failure	ety					Failure	
13	Maxi	num PFDavg)	Failure		Failure				
14	S	///	Failure			Failure			1.
15	8/	/	/Failure		6		Failure		
16		//	Failure					Failure	
17	07			Failure	Failure				\mathbf{O}
18	(Davin	/		Failure	C 1	Failure			
19	8 V	V	1	Failure			Failure		
20				Failure	-			Failure	r
21					Failure		Failure		
22					Failure			Failure	
23						Failure	Failure		
24						Failure	7. 0	Failure	
25							0		Failure
	12 13 14 15 16 17 18 20 21 22 23 24	12 13 14 15 16 17 18 19 20 21 22 23 24	12 Failure 13 Maximum PEDave 14 ////////////////////////////////////	12Failure13Failure14Failure14Failure15Failure16Failure17Failure18Failure20Failure21Failure22Failure23Failure	12 Failure 13 Failure 14 Failure 15 Failure 16 Failure 17 Failure 18 Failure 19 Failure 20 Failure 21 Failure 22 Failure 23 Failure	12FailureFailureFailure13FailureFailureFailure14FailureFailureFailure15FailureFailureFailure16FailureFailureFailure17FailureFailureFailure18FailureFailureFailure20FailureFailureFailure21FailureFailureFailure23FailureFailureFailure24FailureFailureFailure	12FailureImage: Sector of the sector o	12FailureFailureFailure13FailureFailureFailure14FailureFailureFailure15FailureFailureFailure16FailureFailureFailure17FailureFailureFailure18FailureFailureFailure19FailureFailureFailure20FailureFailureFailure21FailureFailureFailure23FailureFailureFailure24FailureFailureFailure	12FailureImage: Sector of the sector o

5.8 Failure modes that DO NOT promote a "Failure on Demand"

The purpose of this section is to record other identified 60-SIF-500 failures that **ARE NOT** included in the "<u>SIL verification</u>" assessment, because they **DO NOT** make this SIF to fail on demand.

1) FAILURE: Hand valves are not in the required position for normal operation.

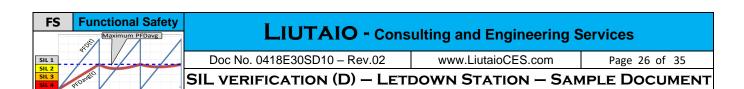
Hand valves **MUST BE** locked in the required position. According to reference [6], Section 2.3, pg 17:

The contribution from human errors should be included in the quantification of PFD (or PFH) if a person/operator is an active element in the execution of the SIF. For example, an operator may be expected to initiate a valve closure (shutdown) or valve opening (blow down) upon an alarm from the SIS.

Since the "Letdown Station" (LDS) hand valves are not an active element of the 60-SIF-500, these hand valves are not included in the "<u>SIL verification</u>" assessment.

Proper working permits' management and implementation of Lock-out of hand valves **MUST APPLY** to keep these hand valves in the required position during normal operation to allow 60-SIF-500 to execute action on demand.

Proper design of hand valve Lock-out **MUST** allow to Lock hand valves **ONLY** when these ones are in the required normal operation position.


2) Instrument Air FAILURE

Malfunctions in the Instrument Air system may lead to decrease the system pressure, and this condition is equivalent to a "<u>Safe Failure</u>" for the safety function 60-SIF-500: the QSV and/or ESV shall close.

FS

Instrument Air system reliability depends on the system configuration, but this information **IS NOT** available.

3) Electrical and Instrument Air power supply failures

Table 10 – Electrical and hydraulic power supply failures

#	Failure description	Failure type	Failure ir assessr	•	
1			"PFDavg"	"STRavg"	
21	Main Electrical power fault	Safe	NO	YES	
3		Detected (1)	NO	TES	
2	UPS power supply fault	Safe Detected	NO	YES	
3	Instrument Air supply fault	Safe	NO	VEC	
		UnDetected	NO	YES	

NOTE 1: An indication in DCS shall notify Console Operator about above listed failures.

5.9 SIF Devices' List and data for "<u>SIL verification</u>" (after Reliability Data Validation)

Table 11 – List of SIF Devices that are considered in the SIL Verification report for "PFDavg" and "STRavg" calculations

#	Device's Tag	Device Type	Input Type	Output Type	Inpu NORMAL	t states SAFE	Device data	Device Description
1	60-PT-511 60-PT-521 60-PT-531 60-PT-541	Initiator	Sar	4-20 ma IS, HART, NAMUR NE 4 3	< 8.5 Bar(g)	≥ 8.5 Bar(g)	SIL & STR	Pipe Run 1, 2, 3 & 4 Quick Shutdown pressure transmitter
2	60-XIB-511 60-XIB-521 60-XIB-531 60-XIB-541	Input	4-20 ma IS, HART pass through, loop powered, NAMUR NE 43	4-20 ma HART pass through, NAMUR NE 43	< 8.5 Bar(g)	≥ 8.5 Bar(g)	SIL & STR	Pipe Run 1, 2, 3 & 4 Quick Shutdown pressure input Barrier/Isolator
3	60-STA-511 60-STA-521 60-STA-531 60-STA-541	Logic	4-20 ma HART, loop power ed, NAMUR NE 43	24 VDC	Energized	De-Energized	SIL & STR	Pipe Run 1, 2, 3 & 4 Quick Shutdown Logic Solver
4	60-XOB-511 60-XOB-521 60-XOB-531 60-XOB-541	Output	24 VDC	24 VDC, IS, loop powered	Energized	De-Energized	SIL & STR	Pipe Run 1, 2, 3 & 4 Quick Shutdown pressure output Barrier/Isolator
5	60-SOV-511 60-SOV-521 60-SOV-531 60-SOV-541	Output	24 VDC, IS	Pneumatic	Energized	De-Energized	SIL & STR	Pipe Run 1, 2, 3 & 4 SOV to Quick Shutdown Valve
6	60-QSV-511 60-QSV-521 60-QSV-531 60-QSV-541	FSE	Pneumatic		Pressurized, Opened	De-Pressurized Closed	SIL & STR	Pipe Run 1, 2, 3 & 4 Quick Shutdown Valve
7	60-PT-510 60-PT-520 60-PT-530 60-PT-540	Initiator		4-20 ma IS, HART, NAMUR NE 43	< 8.5 Bar(g)	≥ 8.5 Bar(g) SIL2 SIL3	SIL & STR	Pipe Run 1, 2, 3 & 4 Shutdown pressure transmitter

		Device		Output	Inpu	t states	Device data	
#	FSDevice's Tag	Туре	Input Type	Туре	NORMAL	SAFE	purpose	Device Description
8	60-XIB-510 60-XIB-520 60-XIB-530 60-XIB-540	Input	4-20 ma IS, HART pass through, loop powered, NAMUR NE 43	4-20 ma HART pass through, NAMUR NE 43	< 8.5 Bar(g)	≥ 8.5 Bar(g)	SIL & STR	Pipe Run 1, 2, 3 & 4 Shutdown pressure input Barrier/Isolator
9	IC-60-PT-510 IC-60-PT-520 IC-60-PT-530 IC-60-PT-540	Input	4-20 ma HART pass through, loop powered, NAMUR NE 43	Logic Solver	< 8.5 Bar(g)	≥ 8.5 Bar(g)	SIL & STR	Pipe Run 1, 2, 3 & 4 Shutdown pressure input card
10	CommonLS	Logic		0		S	SIL & STR	Common Logic Solver
11	OC-60-PT-510 OC-60-PT-520 OC-60-PT-530 OC-60-PT-540	Output	Logic Solver	24 VDC	Energized	De-Energized	SIL & STR	Pipe Run 1, 2, 3 & 4 Shutdown pressure output card
12	60-XOB-510 60-XOB-520 60-XOB-530 60-XOB-540	Output	24 VDC	24 VDC, IS, loop powered	Energized	De-Energized	SIL & STR	Pipe Run 1, 2, 3 & 4 Shutdown pressure output Barrier/Isolator
13	60-SOV-510 60-SOV-520 60-SOV-530 60-SOV-540	Output	24 VDC, IS	Pneumatic	Energized	De-Energized	SIL & STR	Pipe Run 1, 2, 3 & 4 SOV to Shutdown Valve
14	60-ESV-510 60-ESV-520 60-ESV-530 60-ESV-540	FSE	Pneumatic	P. C	Pressurized, Opened	De-Pressurized, Closed	SIL & STR	Pipe Run 1, 2, 3 & 4 Shutdown Valve
15	OC-60SIF510-01 OC-60SIF510-02 OC-60SIF510-03 OC-60SIF510-04	Support	Logi c Solv er	24 VDC	Energized	De-Energized	ONLY STR	Pipe Run 1, 2, 3 & 4 High Priority Trip 60-SIF-510 output card

Column "Type" description:

Initiator	Device that is directly measuring the process variable that can initiate the SIF action to set the FSE in the SAFE state.
Input	Device included in the safety input channel to transfer the "Initiator" condition up to the "Logic Solver".
	Maximum PEDave
Logic	SIF's "Logic Solver", or Device that is performing the "Logic Solver" function.
Output	Device included in the safety output channel to transfer the "Logic Solver" output
	condition up to the "Final Safety Element" (FSE).
FSE	Final Safety Element.

FS Fu	Inctional Safety	LIUTAIO - co	nsulting and Engineering	Services
SIL 1 SIL 2		Doc No. 0418E30SD10 - Rev.02	www.LiutaioCES.com	Page 28 of 35
SIL 3 SIL 4 PFDave		SIL VERIFICATION (D) – LE	TDOWN STATION – SAI	MPLE DOCUMENT
ity data		1////	S .0	E.

Table 12 – SIF Devices Reliability data

	Α	В	С	D	IL 2	F	G	H	I	J	K) L .	Μ	N	0	Р (Q	R	S	Т	
		-		т	SLF	and a state of the	Failure	Data [FI]	r 1	[%]	Main	tenano	ce [h]		DC or	-0	SFF			STR	
	Tag	(A)	Туре	[m]	[m]	λ _{SD}	λ _{su}	λ _{DD}	λ _{DU}	Et	TD		MTTR	DCs	DCD	Value	Туре	Claim	Note	SDD	
1	60-PT-511	\$	Initiator	6	120	33.0	104.0	312.0	115.0	100%	4	24	72	24.1%	73.1%	79.6%	Α	SIL 2	Note 1.	~	1
2	60-XIB-511	\$	Input	6	120		165.0	160.0	40.0	100%	4	24	72	49.2%	0.0%	89.0%	Α	SIL 2	Note 2.	~	2
3	60-STA-511	~	Logic	6	120		663.7	168.7	81.0	100%	4	24	72	20.3%	0.0%	91.1%	В	SIL 2	Note 3	~	
4	60-XOB-511	~	Output	6	120		109.7	94.5	35.2	100%	4	24	72	46.3%	0.0%	85.3%	А	SIL 2	Note 4	~	4
5	60-SOV-511		Output	6	120		184.0		88.0	100%	4	24	72	0.0%	0.0%	67.6%	A	SIL 2	Note 5		
6	60-QSV-511		FSE	6	120			Y	1272.0	100%	4	24	72	0.0%	0.0%	0.0%	В		Note 7. Tight-Shutoff		
7	60-PT-510	~	Initiator	6	120	33.0	104.0	312.0	115.0	100%	4	24	72	76.8%	0.0%	79.6%	Α	SIL 2	Note 1	~	-
8	60-XIB-510	A	Input	6	120		16 5.0	160.0	40.0	100%	4	24	72	49.2%	0.0%	89.0%	Α	SIL 2	Note 2.	~	8
9	IC-60-PT-510	A	Input	6	120	39.0	49.0	13.0	3.4	100%	4	24	72	44.3%	79.3%	96.7%	В	SIL 2	Note 6.	\bigcirc	
10	CommonLS	A	Logic	6	120	1343.0	761.0	932.0	3.4	100%	4	24	72	63.8%	99.6%	99.9%	В	SIL 3	Note 6. 1001D	\circ	1
11	OC-60-PT-510	~	Output	6	120	1369.0	776.0	942.0	3.4	100%	4	24	72	63.8%	99.6%	99.9%	В	SIL 3	Note 6. 1001D	\bigcirc	1
12	60-XOB-510	A	Output	6	120		109.7	94.5	35.2	100%	4	24	72	46.3%	0.0%	85.3%	Α	SIL 2	Note 4	~	1
13	60-SOV-510		Output	6	120		184.0		88.0	100%	4	24	72	0.0%	0.0%	67.6%	Α	SIL 2	Note 5		1
14	60-ESV-510		FSE	6	120				691.0	100%	4	24	72	0.0%	0.0%	0.0%	В		Note 7		1
15	OC-60SIF510-01	~	Support	6	120	1369.0	776.0	942.0	3.4	100%	4	24	72	74.9%	0.0%	99.9%	В	SIL 3	Note 8. 1001D	\bigcirc	1
							D	7	2		7.	0									

		•	В	6	D	E	E	-	Н	T	L 14	2 V			N		P		D	S	Т	1
		A	D	L	U	E	- F (G	<u> </u>	1	57	R		M	N	U	۲	Ų	R	5		
							4		_			-	_									1
					ті	SLF		Failure	Data [FI		[%]	Main	tenan	ce [h]	DCs	DC or		SFF			STR	i.
		Tag	(A)	Туре	[m]	[m]	λ_{SD}	λ _{su}	λ_{DD}	λου	Et	TD	MRT	MTTR	DCs	DCD	Value	Туре	Claim	Note	SDD	1
	16	60-PT-521	~	Initiator	6	120	33.0	104.0	312.0	115.0	100%	4	24	72	24.1%	73.1%	79.6%	Α	SIL 2	Note 1.	~	16
	17	60-XIB-521	\$	Input	6	120	2	165.0	160.0	40.0	100%	4	24	72	49.2%	0.0%	89.0%	Α	SIL 2	Note 2.	~	17
-		60-STA-521	<	Logic	6	120		663.7	168.7	81.0	100%	4	24	72	20.3%	0.0%	91.1%	В	SIL 2	Note 3	~	18
5	19	60-XOB-521	>	Output	6	120	0.0	109.7	94.5	35.2	100%	4	24	72	46.3%	0.0%	85.3%	Α	SIL 2	Note 4	~	19
R	20	60-SOV-521		Output	6	120	2.0.0	184.0		88.0	100%	4	24	72	0.0%	0.0%	67.6%	Α	SIL 2	Note 5		20
	21	60-QSV-521		FSE	6	120	0.0	1		1272.0	100%	4	24	72	0.0%	0.0%	0.0%	В		Note 7. Tight-Shutoff		21
ш	22	60-PT-520	~	Initiator	6	120	33.0	104.0	312.0	115.0	100%	4	24	72	76.8%	0.0%	79.6%	Α	SIL 2	Note 1	~	22
d	23	60-XIB-520	~	Input	6	120	0.0	165.0	160.0	40.0	100%	4	24	72	49.2%	0.0%	89.0%	Α	SIL 2	Note 2.	~	23
E	24	IC-60-PT-520	~	Input	6	120	39.0	49.0	13.0	3.4	100%	4	24	72	44.3%	79.3%	96.7%	В	SIL 2	Note 6.	\bigcirc	24
	25	CommonLS	~	Logic	6	120	1343.0	761.0	932.0	3.4	100%	4	24	72	63.8%	99.6%	99.9%	В	SIL 3	Note 6. 1001D	\bigcirc	25
	26	OC-60-PT-520	>	Output	6	120	1369.0	776. 0	942.0	3.4	100%	4	24	72	63.8%	99.6%	99.9%	В	SIL 3	Note 6. 1001D	\bigcirc	26
	27	60-XOB-520	\$	Output	6	120	0.0	109.7	94.5	35.2	100%	4	24	72	46.3%	0.0%	85.3%	A	SIL 2	Note 4	~	27
	28	60-SOV-520		Output	6	120	0.0	184.0		88.0	100%	4	24	72	0.0%	0.0%	67.6%	A	SIL 2	Note 5		28
	_	60-ESV-520		FSE	6	120	0.0			691.0	100%	4	24	72	0.0%	0.0%	0.0%	В		Note 7		29
	30	OC-60SIF510-02	~	Support	6	120	1369.0	776.0	942.0	3.4	100%	4	24	72 ₅₁₁	1 74.9%	0.0%	99.9%	В	SIL 3	Note 8. 1001D	\bigcirc	30

PIPE RUN 2

			FS Fu		nal Safo			Liu	ITAI	0 - 0	Cons	ultin	g and	d Engi	neerin	ng Ser	vice	S	
			L1 V		Ed. J	- noti	Doc No.	0418E3	OSD10-	Rev.0	2	V	vww.L	iutaioCE	S.com		Pag	e 29 (of 35
			L2 L3	2	1	SII	VER	FICAT		<u>) – (</u>	FT			τατιο			IFF		UMENT
		SI	L 4 PFU				wimum PFD	ILICAT				5011							OMLITI
					SIL 1						6	0				6	K	7	
	Α	В	С	D	SIL 2E	E	G	Н	т	1	K	<u> </u>	М	Ν	0	P	0	R	S
	~				SIL 3	1		/	-			-	8-8				<u> </u>		
				Т	SLF	See.	Failure	Data [FI]	1	[%]	Main	tenano	ce [h]		DC or		SFF	•	1
	Tag	(A)	Туре	[m]	[m]	λ _{SD}	λ _{SU}	λ _{DD}	λου	Et	TD		MTTR	DCs	DCp	Value	Туре	Claim	Note
31 60-PT-5	31	~	Initiator	6	120	33.0	104.0	312.0	115.0	100%	4	24	72	24.1%	73.1%			SIL 2	Note 1.
32 60-XIB-		v	Input	6	120	0.0	165.0	160.0	40.0	100%	4	24	72	49.2%				-	Note 2.
33 60-STA-		v	Logic	6	120	0.0	663.7	168.7	81.0	100%	4	24	72	20.3%	0.0%	91.1%	В	SIL 2	Note 3
34 60-XOB	-531	~	Output	6	120	0.0	109.7	94.5	35.2	100%	4	24	72	46.3%	0.0%	85.3%	Α	SIL 2	Note 4
35 60-SOV			Output	6	120	0.0	184.0		88.0	100%	4	24	72	0.0%	0.0%	67.6%	Α	SIL 2	Note 5
36 60-QSV	-531	-	FSE	6	120	0.0		0.0	1272.0	100%	4	24	72	0.0%	0.0%	0.0%	B	/	Note 7. Tight-Shutoff
37 60-PT-5	30	~	Initiator	6	120	33.0	104.0	312.0	115.0	100%	4	24	72	76.8%	0.0%	79.6%	A	SIL 2	Note 1
38 60-XIB-	530	~	Input	6	120	0.0	165.0	160.0	40.0	100%	4	24	72	49.2%	0.0%	89.0%	Α	SIL 2	Note 2.
39 IC-60-P	T-530	<	Input	6	120	39.0	4 9 .0	13.0	3.4	100%	4	24 🔌	72	44.3%	79.3%	96.7%	В	SIL 2	Note 6.
40 Common	nLS	٨	Logic	6	120	1343.0	761.0	932.0	3.4	100%	4	24	72	63.8%	99.6%	99.9%	В	SIL 3	Note 6. 1001D
41 OC-60-F	PT-530	>	Output	6	120	1369.0	776.0	942.0	3.4	100%	4	24	72	63.8%	99.6%	99.9%	В		Note 6. 1001D
42 60-XOB	-530	~	Output	6	120	5 A &	109.7	94.5	35.2	100%	4	24	72	46.3%	0.0%	85.3%	Α		Note 4
43 60-SOV			Output	6	120		184.0		88.0	100%	4	24	72	0.0%	0.0%	67.6%		SIL 2	Note 5
44 60-ESV-			FSE	6	120		0.0	5	691.0	100%	4	24	72	0.0%		0.0%	_		Note 7
	IF510-03		Support	6	120	1369.0	776.0	942.0	3.4	100%	4	24	72	74.9%	0.0%	99.9%	В	071 0	Note 8. 1001D

PIPE RUN 3

PIPE RUN 4

				TI	SLF		Failure	Data [FI1		[%]	Main	tenand	ce [h]		DC or		SFF	•	1	STR
	Tag	(A)	Туре	[m]	[m]	λ _{sd}	λ _{SU}	λ _{DD}	λ _{DU}	Et	TD	MRT		DCs	DCD	Value	Туре	Claim	Note	SDD
46	60-PT-541	v	Initiator	6	120	33.0	104.0	312.0	115.0	100%	4	24	72	24.1%	73.1%	79.6%	Α	SIL 2	Note 1.	~
47	60-XIB-541	<	Input	6	120		165.0	160.0	4 0. 0	100%	947	24	72	49.2%	0.0%	89.0%	Α	SIL 2	Note 2.	~
	60-STA-541	~	Logic	6	120	0	663.7	168.7	81.0	100%	4	24	72	20.3%	0.0%	91.1%	В	SIL 2	Note 3	~
	60-XOB-541	~	Output	6	120	2	109.7	94.5	35.2	100%	4	24	72	46.3%	0.0%	85.3%	Α	SIL 2	Note 4	~
50	60-SOV-541		Output	6	120		184.0		88.0	100%	4	24	72	0.0%	0.0%	67.6%	Α	SIL 2	Note 5	
-	60-QSV-541		FSE	6	120	0.00	- 0.0	0.0	1272.0	100%	4	24	72	0.0%	0.0%	0.0%	В		Note 7. Tight-Shutoff	
52	60-PT-540	~	Initiator	6	120	33.0	104.0	312.0	115.0	100%	4	24	72	76.8%	0.0%	79.6%	Α	SIL 2	Note 1	~
	60-XIB-540	~	Input	6	120	0.0	165.0	160.0	40.0	100%	4	24	72	49.2%	0.0%	89.0%	Α	-	Note 2.	~
	IC-60-PT-540	~	Input	6	120	39.0	49.0	13.0	3.4	100%	4	24	72	44.3%	79.3%	96.7%	В		Note 6.	\bigcirc
	CommonLS	~	Logic	6	120	1343.0	761.0	932.0	3.4	100%	4	24	72	63.8%	99.6%	99.9%	В	SIL 3	Note 6. 1001D	\bigcirc
56	OC-60-PT-540	~	Output	6	120	1369.0	776.0	942.0	3.4	100%	4	24	72	63.8%	99.6%	99.9%	В		Note 6. 1001D	\bigcirc
	60-XOB-540	~	Output	6	120	0.0	109.7	94.5	35.2	100%	4	24	72	46.3%	0.0%	85.3%	А	SIL 2	Note 4	~
58	60-SOV-540		Output	6	120	0.0	184.0		88.0	100%	4	24	72	0.0%	0.0%	67.6%	Α	SIL 2	Note 5	
59	60-ESV-540		FSE	6	120	0.0	0	10 m h	691.0	100%	4	24	72	0.0%	0.0%	0.0%	В		Note 7	
60	OC-60SIF510-04	~	Support	6	120	1369.0	776.0	942.0	3.4	100%	4	24	72	74.9%	0.0%	99.9%	B	SIL 3	Note 8. 1001D	0

Copyright © 2018 LIUTAIO Consulting and Engineering Services

FS	Functional Safety	LIUTAIO - Cons	ulting and Engineering S	ervices
SIL 1	/	Doc No. 0418E30SD10 - Rev.02	www.LiutaioCES.com	Page 30 of 35
SIL 2 SIL 3 SIL 4	PETOSVETE	SIL VERIFICATION (D) – LETI	DOWN STATION – SAN	IPLE DOCUMENT

NOTES:

- 1) Rosemount 1151 Smart pressure transmitter. Intrinsically safe. NAMUR NE43.
- 2) Siemens 9106B isolator, 1-channel input, 2-channels outputs. Input from Zone 0, intrinsically safe. HART transparent. NAMUR NE43 capable. Input with Loop powered mode.
- 3) Moore Industries Safety Trip Alarm (STA/LHPRG/3PRG/24DC [DIN] Relay Output, Current/Voltage). MII 1103026 C001. SIL 3 capable by "Route 2H". Since All internal diagnostic faults will cause the fault relay to de-energize and remain in a latched state, in case of "Dangerous Detected" failure, STA is set in SAFE state (SDD is (v)). Refer to section 6, page 60, "STA User Manual No.225-748-01L, Moore Industries.
- 4) GM International D5244S Isolator, 1-channel input, 1-channel output. Output to Zone 0. Intrinsically safe. Output with Loop powered mode.
- 5) ASCO Series 8320 Solenoid valve. De-Energize to trip.
- 6) Delta V SIS system, NFPA72, EN54-2 Logic Solver. Data from Exida Certificate FRS 091023 C001.
- 7) Reliability data of Safety Valve is available from VENDORS upon request ONLY. In order to prepare this report, a typical Safety valve reliability data was used (see Exida report No. VIR 08/01-53 R001).
- 8) Output card in "CommonLS" to allow 60-SIF-510 High Priority Trip to close QSV on SIF demand. Refer to section 5.4.5 for further information.

DESCRIPTION OF COLUMNS IN Table 12:

- Column "A" Device tag number.
- Column "B" "Column (A)" flag indicates if the SIF design/installation takes advantage of the related "Device" fault detection capabilities (Diagnostics), or NOT.

"Device" **DOES NOT** have fault detection capabilities at all (NO Diagnostics). It means both λ_{SD} and λ_{DD} are equal to ZERO(0.0) FIT.

YES, "Device" fault detection capabilities (Diagnostics) are used in SIF design/installation, and can be communicated to other devices, or systems (SIS, DCS).

NO, even though the "Device" has fault detection capabilities (Diagnostics), such capabilities **ARE NOT** used in SIF design/installation.

FS	Functional Safety	LIUTAIO - Cons	ulting and Engineering S	ervices
SIL 1		Doc No. 0418E30SD10 - Rev.02	www.LiutaioCES.com	Page 31 of 35
SIL 3 SIL 4	PHD84810	SIL VERIFICATION (D) – LETI	DOWN STATION - SAM	IPLE DOCUMENT

Column "C" Column "Type" description:

Initiator Device that is directly measuring the process variable that can initiate the SIF action to set the FSE in the SAFE state.

Input Device included in the safety input channel to transfer the "Initiator" condition up to the "Logic Solver".

Logic SIF's "Logic Solver", or Device that is performing the "Logic Solver" function.

Output Device included in the safety output channel to transfer the "Logic Solver" output condition up to the "Final Safety Element" (FSE). FSE Final Safety Element.

Column "D" Proof Test Period (TI) in months.

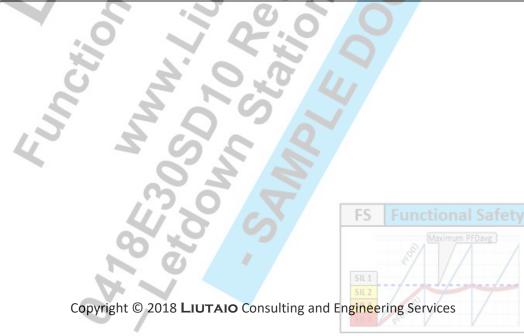
- Column "E" Service Life period (SLf), or Mission time in month
- Column "F" Safe Detected failure rate in FIT.
- Column "G" Safe UnDetected failure rate in FIT.
- Column "H" Dangerous Detected failure rate in FIT.
- Column "I" Dangerous UnDetected failure rate n FIT.
- Column "J" Proof test effectiveness (Et), or Proof Test Coverage (PTC), in percentage (%).
- Column "K" Proof test duration (TD, maintenance time) in hours.
- Column "L" Mean Restoration Time (MRT, maintenance time) in hours.
- Column "M" Mean Time To Restoration, or Mean Time To Repair (MTTR, maintenance time) in hours.
- Column "N" Safe Diagnostic Coverage (DC_s) in percentage (%). Calculated from safe failure rates.
- Column "O" Diagnostic Coverage (DC), or Dangerous Diagnostic Coverage (DC_D) in percentage (%). Calculated from dangerous failure rates.
- Column "P" "Device" Safe Failure Factor (SFF) value in percentage (%).
- Column "Q" Device type "A" or "B", according to IEC-61508-4 (2010), section 3.6.15.
- Column "R" Maximum SIL rating to claim for "Device", according to IEC-61508-4 (2010), section 3.6.15. This "Device" data is used to calculate the whole SIF maximum SIL rate to claim by using "Route 1H".
- Column "S" Notes to provide more information about the referred "Device".

Copyright © 2018 LIUTAIO Consulting and Engineering Services

FS Functional Safety	LIUTAIO - Cons	ulting and Engineering S	Services
SIL 1 SIL 2	Doc No. 0418E30SD10 - Rev.02	www.LiutaioCES.com	Page 32 of 35
SIL 2 SIL 3 SIL 4 PFDavB ⁽¹⁾	SIL VERIFICATION (D) - LETI	DOWN STATION - SAM	IPLE DOCUMENT

Column "T" Device "Spurious Dangerous Detected" (SDD) flag indicates if the SIF design/installation takes advantage of the related "Device" fault detection capabilities (Diagnostics) to initiate SIF demand to set FSE in SAFE state when a "Dangerous Detected" failure occurs. Strictly speaking, "STRavg" calculation should be based on " $\lambda_{sD} + \lambda_{SU}$ " (SD+SU) ONLY, BUT if " λ_{DD} " (DD) can initiate SIF demand to set FSE in SAFE state, then " λ_{DD} " (DD) **MUST BE** considered in the "STRavg" calculation.

So,


"Device" **DOES NOT** have fault detection capabilities at all (NO Diagnostics, see column "B" above), or the device "Dangerous Detected" failure rate (λ_{DD}) is equal to ZERO(0.0) FIT.

YES, "Device" fault detection capabilities (Diagnostics) were considered in the SIF design/installation, and if a "Device" "Dangerous Detected" failure occurs. So, when the failure is detected, a WARN is given to Operator, and SIF initiate action to set "Device" in SAFE state. NO delay time applies.

This action may lead to a SIF AUTOMATIC TRIP if the faulted "Device" is in the straight path to the FSE. So, a device "Dangerous Detected" failure will initiate a "Spurious Trip".

NO, even though the "Device" has fault detection capabilities (Diagnostics), such capabilities **ARE NOT** used in SIF design/installation to set the "Device" in SAFE state.

So, when a device "Dangerous Detected" failure occurs, nothing happens, the SIF may fail on demand if the faulted "Device" is in the straight path to the FSE. ONLY a periodic "Proof Test" can detect the failure.

FS	Functional Safety	LIUTAIO - Cons	ulting and Engineering S	ervices
SIL 1		Doc No. 0418E30SD10 - Rev.02	www.LiutaioCES.com	Page 33 of 35
SIL 2 SIL 3 SIL 4	PEDANEI	SIL VERIFICATION (D) – LET	DOWN STATION – SAM	IPLE DOCUMENT

Table 13 – Reliability data of selected new valves to satisfy 60-SIF-500 target "SIL 3" rating

		Α	B	С	D	E	F	G	Н	I	3	К	L	Μ	N	0	P	Q	R	S	Т
					TI	SLF		Failure	Data [FIT	.]	[%]	Main	tenan	ce [h]	-	DC or		SFF	1	L	STR
		Tag	(A)	Туре	[m]	[m]	λ_{SD}	λ _{su}	λ_{DD}	λ _{DU}	Et	TD	MRT	MTTR	DCs	DCD	Value	Туре	Claim	Note	SDD
IΓ	6	60-QSV-511	~	FSE	8	120		485.0	1 05 4.6	958.8	100%	4	24	72	0.0%	52.4%	61.6%	А	SIL 2	Note 7. Tight-Shutoff	\bigcirc
	14	60-ESV-510	~	FSE	8	120		339 .0	710.2	67 6 .5	100%	4	24	72	0.0%	51.2%	60.8%	Α	SIL 2	Note 7	\bigcirc
													65		U						
									× .				-	_		0/					

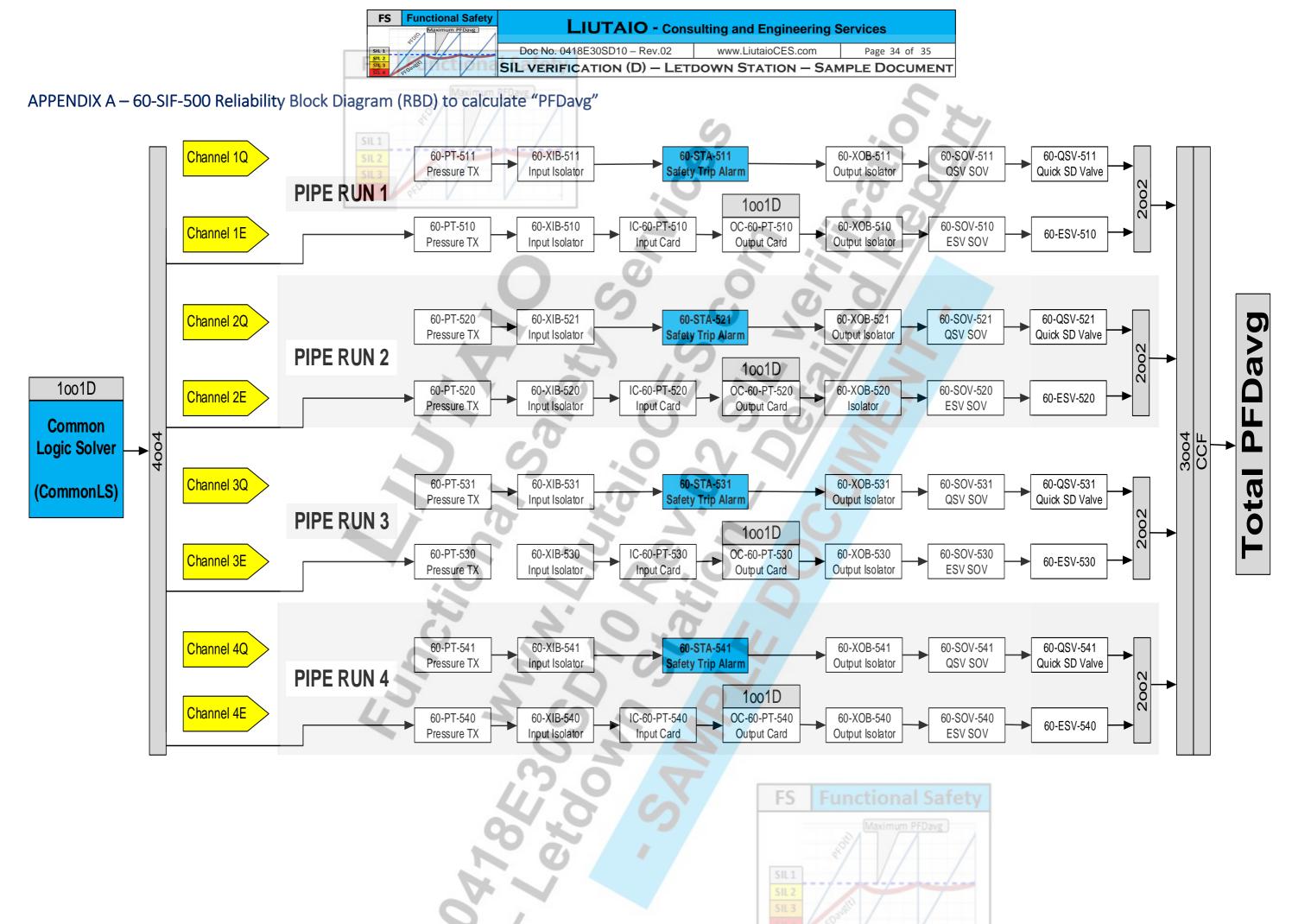
H

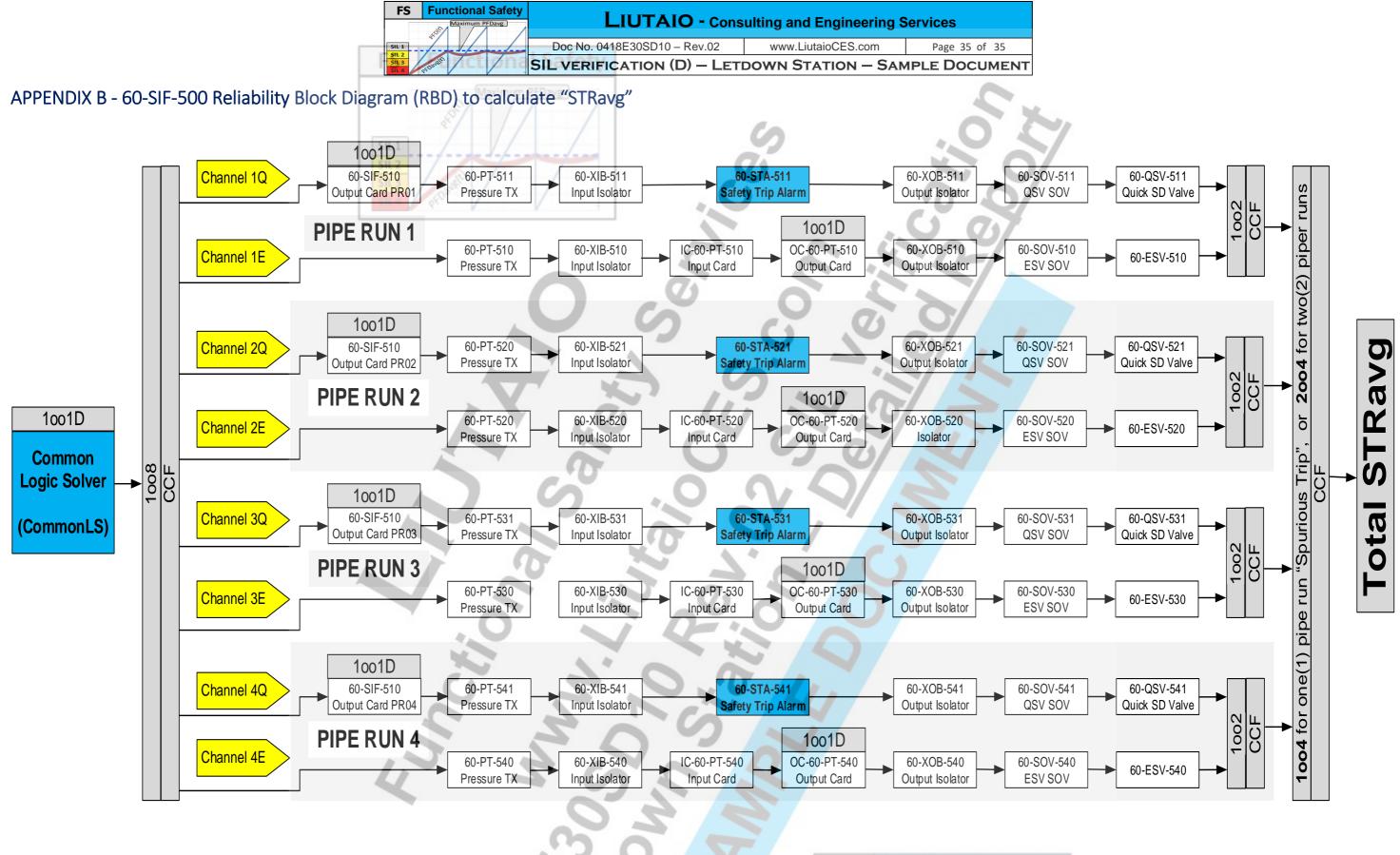
Pipe Run

Pipe Run 2

Pipe Run 4

1	Α	В	С	D	E	E ²	G	HN	I	J	K	L.	M	N	0	Р	0	R	S	Т
								- 0			15									
	_		_	TI	SLF		Failure	Data [FIT	1	[%]	Main	tenand		DC	DC or		SFF			STR
	Tag	(A)	Туре	[m]	[m]	λ_{SD}	λ _{SU}	λ _{DD}	λ _{ου}	Et	TD	MRT	MTTR		DCD	Value	Туре	Claim	Note	SDD
21	1 60-QSV-521	~	Output	8	120		485.0	1054.6	958.8	100%	4	24	72	0.0%	52.4%	61.6%	Α	SIL 2	Note 7. Tight-Shutoff	\bigcirc
							339.0	710.2	676.5	100%					51.2%	60.8%		SIL 2	Note 7	


1


	Tag (A) Type [m] [m] λ _{SD} λ _{DD} λ _{DU} Et TD MRT MTR DCs DCb Value Type Claim Note 36 60-QSV-531 Image: Comparison of the comparison		A		C				6	H	1		n				U	F	Y	R	5		
and (A) (V) (III) (IIII) (IIII) (III) (II	and a					ті	SLF		Failure	Data [FI	1	[%]	Main	ntenan	ce [h]		DC or		SFF			STR	
			Tag	(A)	Туре	[m]	[m]	λ _{SD}	λ _{su}	λ _{DD}	λ _{DU}	Et	TD	MRT	MTTR	DCs	DCD	Value	Туре	Claim	Note	SDD	
44 60-ESV-530 √ FSE 8 120 339.0 710.2 676.5 100% 4 24 72 0.0% 51.2% 60.8% A SIL 2 Note 7 ○	44 60-ESV-530 ✔ FSE 8 120 339.0 710.2 676.5 100% 4 24 72 0.0% 51.2% 60.8% A SIL 2 Note 7	36	60-QSV-531	~	Output	8	120		485.0	1054.6	958.8	100%	4	24	72	0.0%	52.4%	61.6%	Α	SIL 2	Note 7. Tight-Shutoff	\bigcirc	
		44	60-ESV-530	~	FSE	8	120	1	339.0	710.2	676.5	100%	4	24	72	0.0%	51.2%	60.8%	Α	SIL 2	Note 7	\bigcirc	

4		Α	В	С	D	E	F	G	H		J	К	L	M	Ν	0	Р	Q	R	S	Т	
Run				TI SLF Failure Data [FIT]						[%] Maintenance [h]					DC or	SFF				STR		
Q		Tag	(A)	Туре	[m]	[m]	λ_{SD}	λ _{su}	λ_{DD}	λ _{du}	Et	TD	MRT	MTTR	DCs	DCD	Value	Туре	Claim	Note	SDD	
ip	51	60-QSV-541	~	Output	8	120		485.0	1054.6	958.8	100%	4	24	72	0.0%	52.4%	61.6%	Α	SIL 2	Note 7. Tight-Shutoff	\bigcirc	51
•	59	60-ESV-540	~	FSE	8	120		339.0	710.2	676.5	100%	4	24	72	0.0%	51.2%	60.8%	Α	SIL 2	Note 7	\bigcirc	59

Refer to Table 12 for "Note 7" and further description of columns in the above tables.

FS

Copyright © 2018 LIUTAIO Consulting and Engineering Services